[1] |
张雪, 王俊祥. 类风湿关节炎共病的研究进展[J]. 临床荟萃, 2025, 40(1):86-89.
|
[2] |
Smolen JS, Pangan AL, Emery P, et al. Upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate response to methotrexate (SELECT-MONOTHERAPY): A randomised, placebo-controlled, double-blind phase 3 study[J]. Lancet, 2019, 393(10188):2303-2311.
doi: S0140-6736(19)30419-2
pmid: 31130260
|
[3] |
Zhao J, Jiang P, Guo S, et al. Apoptosis, autophagy, NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis[J]. Front Immunol, 2021, 12:809806.
|
[4] |
Harna B, Kalra P, Arya S, et al. Mesenchymal stromal cell therapy for patients with rheumatoid arthritis[J]. Exp Cell Res, 2023, 423(1):113468.
|
[5] |
Mateen S, Zafar A, Moin S, et al. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis[J]. Clin Chim Acta, 2016, 455:161-171.
doi: 10.1016/j.cca.2016.02.010
pmid: 26883280
|
[6] |
Zhang X, Zhang H. Pro-resolving and anti-inflammatory effects of resolvins and protectins in rheumatoid arthritis[J]. Inflammopharmacology, 2023, 31(6):2995-3004.
doi: 10.1007/s10787-023-01343-5
pmid: 37831392
|
[7] |
Avouac J, Pezet S, Vandebeuque E, et al. Semaphorins: From angiogenesis to inflammation in rheumatoid arthritis[J]. Arthritis Rheumatol, 2021, 73(9):1579-1588.
|
[8] |
Xin P, Xu X, Deng C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases[J]. Int Immunopharmacol, 2020, 80:106210.
|
[9] |
Adly AS, Adly MS, Adly AA. Effects of laser acupuncture tele-therapy for rheumatoid arthritis elderly patients[J]. Lasers Med Sci, 2022, 37(1):499-504.
|
[10] |
You H, Xu D, Zhao J, et al. JAK Inhibitors: Prospects in connective tissue diseases[J]. Clin Rev Allergy Immunol, 2020, 59(3):334-351.
|
[11] |
Cao ML, Miao Z, Zhou HZ. DNA methylation is involved in epigenetic regulation in the pathogenesis of rheumatoid arthritis[J]. Int J Immunol, 2022, 45(5):553-557.
|
[12] |
Lahera A, López-Nieva P, Alarcón H, et al. SOCS3 deregulation contributes to aberrant activation of the JAK/STAT pathway in precursor T-cell neoplasms[J]. Br J Haematol, 2023, 201(4):718-724.
|
[13] |
Baldini C, Moriconi FR, Galimberti S, et al. The JAK-STAT pathway: An emerging target for cardiovascular disease in rheumatoid arthritis and myeloproliferative neoplasms[J]. Eur Heart J, 2021, 42(42):4389-4400.
doi: 10.1093/eurheartj/ehab447
pmid: 34343257
|
[14] |
Liu H, Li Q, Chen Y, et al. Suberosin attenuates rheumatoid arthritis by repolarizing macrophages and inhibiting synovitis via the JAK/STAT signaling pathway[J]. Arthritis Res Ther, 2025, 27(1):12.
doi: 10.1186/s13075-025-03481-3
pmid: 39838477
|
[15] |
Yi JJ, Zhang J, Song CL, et al. NF-κB: A mediator that promotes or inhibits angiogenesis in human diseases?[J]. Expert Rev Mol Med, 2023, 25: e31.
|
[16] |
Zhao Y, Sun X, Lin J, et al. Panaxynol induces fibroblast-like synovial cell apoptosis, inhibits proliferation and invasion through TLR4/NF-κB pathway to alleviate rheumatoid arthritis[J]. Int Immunopharmacol, 2021, 101:108321.
|
[17] |
Li G, Xia Z, Liu Y, et al. SIRT1 inhibits rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and inflammatory response via suppressing NF-κB pathway[J]. Biosci Rep, 2018, 38(3): BSR20180541.
|
[18] |
Linghu K, Cui W, Li T, et al. Small molecule α-methylene-γ-butyrolactone, an evolutionarily conserved moiety in sesquiterpene lactones, ameliorates arthritic phenotype via interference DNA binding activity of NF-κB[J]. Acta Pharm Sin B, 2024, 14(8):3561-3575.
|
[19] |
Kong L, Wang L, Zhao Q, et al. Rhodojaponin Ⅱ inhibits TNF-α-induced inflammatory cytokine secretion in MH7A human rheumatoid arthritis fibroblast-like synoviocytes[J]. J Biochem Mol Toxicol, 2020, 34(10):e22551.
|
[20] |
Li A, Yang J, Zhang C, et al. Lactobacillus acidophilus KLDS 1.0738 inhibits TLR4/NF-κB inflammatory pathway in β-lactoglobulin-induced macrophages via modulating miR-146a[J]. J Food Biochem, 2021, 45(10):e13662.
|
[21] |
Chen Q, Li H, Liu Y, et al. Epigenetic regulation of immune and inflammatory responses in rheumatoid arthritis[J]. Front Immunol, 2022, 13:881191.
|
[22] |
Roy T, Boateng ST, Uddin MB, et al. The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds[J]. Cells, 2023, 12(12):1671.
|
[23] |
Wang J, Conlon D, Rivellese F, et al. Synovial inflammatory pathways characterize anti-TNF-responsive rheumatoid arthritis patients[J]. Arthritis Rheumatol, 2022, 74(12):1916-1927.
|
[24] |
Yu Y. Levamisole ameliorates rheumatoid arthritis by downregulating the PI3K/Akt pathway in SD rats[J]. Pharmaceuticals, 2024, 17(11):1504.
|
[25] |
Han R, Zhou D, Ji N, et al. Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway[J]. J Nanobiotechnology, 2025, 23(1):41.
|
[26] |
刘菲菲, 汪元, 刘健, 等. 新风胶囊通过抑制lncRNA HOTAIR/PI3K/AKT通路减轻类风湿关节炎成纤维细胞样滑膜细胞诱导的人脐静脉内皮细胞血管新生[J/OL]. 细胞与分子免疫学杂志, 1-24[2025-04-02].
|
[27] |
Liu C, He L, Wang J, et al. Anti-angiogenic effect of shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways[J]. J Ethnopharmacol, 2020, 260:113039.
|
[28] |
Iroegbu JD, Ijomone OK, Femi OM, et al. ERK/MAPK signalling in the developing brain: Perturbations and consequences[J]. Neurosci Biobehav Rev, 2021, 131:792-805.
doi: 10.1016/j.neubiorev.2021.10.009
pmid: 34634357
|
[29] |
Pan D, Li N, Liu Y, et al. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway[J]. Int Immunopharmacol, 2018, 55:174-182.
doi: S1567-5769(17)30484-8
pmid: 29268189
|
[30] |
Yu SF, Cheng TT, Huang GK, et al. Targeting FGFR3 is a useful therapeutic strategy for rheumatoid arthritis treatment[J]. Curr Mol Pharmacol, 2024, 17(1):e18761429261684.
|
[31] |
Taams LS. Interleukin-17 in rheumatoid arthritis: Trials and tribulations[J]. J Exp Med, 2020, 217(3):e20192048.
|
[32] |
Meng M, Wang L, Yao Y, et al. Ganoderma lucidum polysaccharide peptide (GLPP) attenuates rheumatic arthritis in rats through inactivating NF-κB and MAPK signaling pathways[J]. Phytomedicine, 2023, 119:155010.
|
[33] |
Zack SR, Alzoubi O, Satoeya N, et al. Another Notch in the belt of rheumatoid arthritis[J]. Arthritis Rheumatol, 2024, 76(10):1475-1487.
|
[34] |
Siddique R, Mehmood MH, Haris M, et al. Promising role of polymeric nanoparticles in the treatment of rheumatoid arthritis[J]. Inflammopharmacology, 2022, 30(4):1207-1218.
doi: 10.1007/s10787-022-00997-x
pmid: 35524837
|
[35] |
Wei K, Korsunky I, Marshall JL, et al. Notch signalling drives synovial fibroblast identity and arthritis pathology[J]. Nature, 2020, 582(7811):259-264.
|
[36] |
Chen J, Li J, Chen J, et al. Treatment of collagen-induced arthritis rat model by using Notch signalling inhibitor[J]. J Orthop Translat, 2021, 28:100-107.
|
[37] |
Chen J, Cheng W, Li J, et al. Notch-1 and Notch-3 mediate hypoxia-induced activation of synovial fibroblasts in rheumatoid arthritis[J]. Arthritis Rheumatol, 2021, 73(10):1810-1819.
|
[38] |
Ferreira A, Aster JC. Notch signaling in cancer: Complexity and challenges on the path to clinical translation[J]. Semin Cancer Biol, 2022, 85:95-106.
|