临床荟萃 ›› 2022, Vol. 37 ›› Issue (4): 369-372.doi: 10.3969/j.issn.1004-583X.2022.04.016
收稿日期:
2021-10-28
出版日期:
2022-04-20
发布日期:
2022-05-13
通讯作者:
吕佩源
E-mail:peiyuanlu@163.com
基金资助:
Received:
2021-10-28
Online:
2022-04-20
Published:
2022-05-13
摘要:
在全球范围内,脑卒中具有极高的发病率、死亡率和致残率,给家庭和社会带来了沉重的负担,但目前其治疗方法仍十分有限。控制危险因素是预防缺血性脑卒中发生的关键。越来越多的证据表明,免疫炎症反应在脑卒中的病理生理过程中起到重要作用。动脉粥样硬化、高血压、高胆固醇血症、心脏疾病等是缺血性脑卒中的危险因素,调节性T细胞与之密切相关。调节性T细胞是CD4+T细胞的一个亚群,在维持免疫动态平衡、预防自身免疫和炎症等方面发挥重要作用。本文将对调节性T细胞与缺血性脑卒中危险因素进行综述,以期为缺血性脑卒中的预防及治疗提供新思路。
中图分类号:
何洪真, 吕佩源. 调节性T细胞与缺血性脑卒中危险因素的相关性[J]. 临床荟萃, 2022, 37(4): 369-372.
[1] |
Dong Y, Guo ZN, Li Q. et al. Chinese stroke association guidelines for clinical management of cerebrovascular disorders: executive summary and 2019 update of clinical management of spontaneous subarachnoid haemorrhage[J]. Stroke Vasc Neurol, 2019, 4(4): 176-181.
doi: 10.1136/svn-2019-000296 pmid: 32030200 |
[2] |
Chen HS, Chen X, Li WT. et al. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: Potential application for drug discovery[J]. Acta Pharmacol Sin, 2018, 39(5): 669-682.
doi: 10.1038/aps.2018.27 URL |
[3] |
Santamaría-Cadavid M, Rodríguez-Castro E, Rodríguez-Yáñez M. et al. Regulatory T cells participate in the recovery of ischemic stroke patients[J]. BMC Neurol, 2020, 20(1): 68.
doi: 10.1186/s12883-020-01648-w pmid: 32111174 |
[4] |
Sakaguchi S, Sakaguchi N, Asano M. et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164.
pmid: 7636184 |
[5] |
Ono M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes[J]. Immunology, 2020, 160(1): 24-37.
doi: 10.1111/imm.13178 URL |
[6] |
Tao JH, Cheng M, Tang JP. et al. Foxp3, regulatory T cell, and autoimmune diseases[J]. Inflammation, 2017, 40(1): 328-339.
doi: 10.1007/s10753-016-0470-8 URL |
[7] |
Battaglia M, Stabilini A, Migliavacca B. et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients[J]. J Immunol, 2006, 177(12): 8338-8347.
doi: 10.4049/jimmunol.177.12.8338 pmid: 17142730 |
[8] | Trzonkowski P, Szarynska M, Mysliwska J. et al. Ex vivo expansion of CD4(+)CD25(+) T regulatory cells for immunosuppressive therapy[J]. Cytometry A, 2009, 75(3): 175-188. |
[9] |
Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: Mechanisms of differentiation and function[J]. Annu Rev Immunol, 2012, 30: 531-564.
doi: 10.1146/annurev.immunol.25.022106.141623 pmid: 22224781 |
[10] |
Wang Y, Zhang JH, Sheng J. et al. Immunoreactive cells after cerebral ischemia[J]. Front Immunol, 2019, 10: 2781.
doi: 10.3389/fimmu.2019.02781 URL |
[11] |
Drieu A, Buendia I, Levard D. et al. Immune responses and anti-inflammatory strategies in a clinically relevant model of thromboembolic ischemic stroke with reperfusion[J]. Transl Stroke Res, 2020, 11(3): 481-495.
doi: 10.1007/s12975-019-00733-8 URL |
[12] |
Ito M, Komai K, Nakamura T. et al. Tissue regulatory T cells and neural repair[J]. Int Immunol, 2019, 31(6): 361-369.
doi: 10.1093/intimm/dxz031 URL |
[13] |
Mao L, Li P, Zhu W. et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke[J]. Brain, 2017, 140(7): 1914-1931.
doi: 10.1093/brain/awx111 URL |
[14] |
Ito M, Komai K, Mise-Omata S. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery[J]. Nature, 2019, 565(7738): 246-250.
doi: 10.1038/s41586-018-0824-5 URL |
[15] |
Li P, Gan Y, Sun BL. et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia[J]. Ann Neurol, 2013, 74(3): 458-471.
doi: 10.1002/ana.23815 URL |
[16] |
Sakai R, Komai K, Iizuka-Koga M. et al. Regulatory T cells: Pathophysiological roles and clinical applications[J]. Keio J Med, 2020, 69(1): 1-15.
doi: 10.2302/kjm.2019-0003-OA URL |
[17] | Klein M, Bopp T. Cyclic AMP represents a crucial component of treg cell-mediated immune regulation[J]. Front Immunol, 2016, 7: 315. |
[18] | 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑血管病一级预防指南2019[J]. 中华神经科杂志, 2019, 52(9): 684-708. |
[19] | He X, Liang B, Gu N. Th17/Treg imbalance and atherosclerosis[J]. Dis Markers, 2020: 8821029. |
[20] |
Gewaltig J, Kummer M, Koella C. et al. Requirements for CD8 T-cell migration into the human arterial wall[J]. Hum Pathol, 2008, 39(12): 1756-1762.
doi: 10.1016/j.humpath.2008.04.018 pmid: 18706675 |
[21] |
Ait-Oufella H, Salomon BL, Potteaux S. et al. Natural regulatory T cells control the development of atherosclerosis in mice[J]. Nat Med, 2006, 12(2): 178-180.
pmid: 16462800 |
[22] |
Foks AC, Lichtman AH, Kuiper J. Treating atherosclerosis with regulatory T cells[J]. Arterioscler Thromb Vasc Biol, 2015, 35(2): 280-287.
doi: 10.1161/ATVBAHA.114.303568 URL |
[23] |
Matrougui K, Abd Elmageed Z, Kassan M. et al. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice[J]. Am J Pathol, 2011, 178(1): 434-441.
doi: 10.1016/j.ajpath.2010.11.034 pmid: 21224080 |
[24] |
Radwan E, Mali V, Haddox S. et al. Treg cells depletion is a mechanism that drives microvascular dysfunction in mice with established hypertension[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(2): 403-412.
doi: 10.1016/j.bbadis.2018.10.031 URL |
[25] |
Iulita MF, Duchemin S, Vallerand D. et al. CD4(+) regulatory T lymphocytes prevent impaired cerebral blood flow in angiotensin Ⅱ-induced hypertension[J]. J Am Heart Assoc, 2019, 8(1): e009372.
doi: 10.1161/JAHA.118.009372 URL |
[26] |
Gu X, Li Y, Chen S. et al. Association of lipids with ischemic and hemorrhagic stroke: A prospective cohort study among 267500 Chinese[J]. Stroke, 2019, 50(12): 3376-3384.
doi: 10.1161/STROKEAHA.119.026402 URL |
[27] |
Amarenco P, Bogousslavsky J, Callahan A. et al. High-dose atorvastatin after stroke or transient ischemic attack[J]. N Engl J Med, 2006, 355(6): 549-559.
doi: 10.1056/NEJMoa061894 URL |
[28] |
Katsanos AH, Hart RG. New horizons in pharmacologic therapy for secondary stroke prevention[J]. JAMA Neurol, 2020, 77(10): 1308-1317.
doi: 10.1001/jamaneurol.2020.2494 URL |
[29] |
Amarenco P, Kim JS, Labreuche J. et al. A comparison of two LDL cholesterol targets after ischemic stroke[J]. N Engl J Med, 2020, 382(1): 9.
doi: 10.1056/NEJMoa1910355 URL |
[30] |
Maganto-Garcia E, Tarrio ML, Grabie N. et al. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia[J]. Circulation, 2011, 124(2): 185-195.
doi: 10.1161/CIRCULATIONAHA.110.006411 pmid: 21690490 |
[31] |
Mailer RKW, Gistera A, Polyzos KA. et al. Hypercholesterolemia enhances T cell receptor signaling and increases the regulatory T cell population[J]. Sci Rep, 2017, 7(1): 15655.
doi: 10.1038/s41598-017-15546-8 URL |
[32] |
Rao LN, Ponnusamy T, Philip S. et al. Hypercholesterolemia induced immune response and inflammation on progression of atherosclerosis in Apob(tm2Sgy) Ldlr(tm1Her)/J mice[J]. Lipids, 2015, 50(8): 785-797.
doi: 10.1007/s11745-015-4046-4 URL |
[33] |
Hu H, Wu J, Cao C. et al. Exosomes derived from regulatory T cells ameliorate acute myocardial infarction by promoting macrophage M2 polarization[J]. IUBMB Life, 2020, 72(11): 2409-2419.
doi: 10.1002/iub.2364 URL |
[34] |
Mukhopadhyay S, Varma S, Mohan Kumar HN. et al. Circulating level of regulatory T cells in rheumatic heart disease: An observational study[J]. Indian Heart J, 2016, 68(3): 342-348.
doi: 10.1016/j.ihj.2015.08.009 pmid: 27316488 |
[35] |
Sulzgruber P, Koller L, Winter MP. et al. The impact of CD4(+)CD28(null) T-lymphocytes on atrial fibrillation and mortality in patients with chronic heart failure[J]. Thromb Haemost, 2017, 117(2): 349-356.
doi: 10.1160/TH16-07-0531 URL |
[36] | Hammer A, Sulzgruber P, Koller L. et al. The prognostic impact of circulating regulatory T lymphocytes on mortality in patients with ischemic heart failure with reduced ejection fraction[J]. Mediators Inflamm, 2020: 6079713. |
[1] | 胡丽艳, 陈琳, 安艳新, 单婕, 高晓红, 吕佳宁, 尤佳伟. 膳食炎症指数与神经退行性疾病相关性的研究进展[J]. 临床荟萃, 2025, 40(4): 372-376. |
[2] | 叶倩, 刘申香. D-二聚体与接受PD-1/PD-L1抑制剂治疗的晚期肿瘤患者长期预后的关系:一项Meta分析[J]. 临床荟萃, 2025, 40(2): 101-106. |
[3] | 李登峰, 黄家虎, 李廷俊, 吕勇, 金珍珍, 连少峰. 基于肺部超声评分的儿童难治性肺炎支原体肺炎预测模型的构建[J]. 临床荟萃, 2025, 40(2): 153-157. |
[4] | 龙均, 字颖, 王先耀, 施荣杰. 免疫球蛋白G4相关性疾病研究进展[J]. 临床荟萃, 2024, 39(8): 763-768. |
[5] | 刘翠翠, 朱亚芳, 吕文娟. 不同HRCT表型COPD患者戒烟后肺功能、炎性因子和临床症状变化[J]. 临床荟萃, 2024, 39(7): 625-629. |
[6] | 王忠奇, 李今朝, 吴南. 急性冠脉综合征患者全身免疫炎症指数与冠状动脉病变严重程度的相关性[J]. 临床荟萃, 2024, 39(6): 512-517. |
[7] | 马千里. 岩藻黄素在认知障碍类疾病中的研究进展[J]. 临床荟萃, 2024, 39(6): 572-576. |
[8] | 邬晓敏, 方益鹏, 章真, 章烨, 金成. 仑伐替尼联合PD-1单抗及GEMOX方案在晚期胆道恶性肿瘤治疗中的临床观察[J]. 临床荟萃, 2024, 39(5): 408-412. |
[9] | 王娇燕, 严超, 应可净. 气道慢性炎症性疾病并发静脉血栓栓塞症的研究进展[J]. 临床荟萃, 2024, 39(5): 470-474. |
[10] | 任雷, 刘晔, 鲍书友, 李葵芳. 母细胞性浆细胞样树突细胞肿瘤2例并文献复习[J]. 临床荟萃, 2024, 39(3): 253-258. |
[11] | 王先耀, 施荣杰, 龙均, 字颖. 膳食炎症指数在慢性疾病中的应用现状[J]. 临床荟萃, 2024, 39(3): 284-288. |
[12] | 张晓璐, 李红山. 自身免疫性肝炎发病机制研究进展——聚焦“肠道菌群与免疫系统相互作用”[J]. 临床荟萃, 2024, 39(2): 177-182. |
[13] | 陈颖新, 王韶轩. JAK/STAT信号通路在消化系统疾病中的研究进展[J]. 临床荟萃, 2024, 39(12): 1125-1130. |
[14] | 梁祎. 姜黄素对2型糖尿病患者炎症及氧化应激影响的meta分析[J]. 临床荟萃, 2024, 39(11): 974-979. |
[15] | 王欢, 沈婷, 孔颖宏, 居悦俊. 女性糖尿病神经源性膀胱患者抗氧化和炎症因子水平及其临床意义[J]. 临床荟萃, 2024, 39(11): 984-988. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||