临床荟萃 ›› 2021, Vol. 36 ›› Issue (4): 374-378.doi: 10.3969/j.issn.1004-583X.2021.04.018
收稿日期:
2020-10-08
出版日期:
2021-04-20
发布日期:
2021-05-13
通讯作者:
张志华
E-mail:zzhangzhihua@163.com
基金资助:
Received:
2020-10-08
Online:
2021-04-20
Published:
2021-05-13
摘要:
肠道微生态由肠道正常菌群及其所生活的环境共同构成,肠道菌群承担着人体多种生理功能,包括免疫、代谢和内分泌功能等,被视为人体“器官”,在维持人体健康中起着至关重要的作用。抗生素常用于治疗各种感染性疾病,抗生素可消灭患者机体的大多数致病菌,但同时也严重破坏了肠道微生态平衡导致肠道菌群失调和各种急慢性疾病,抗生素对肠道微生物组成和结构的影响,取决于抗生素的种类、剂量和应用时间。本文综述了抗生素与肠道微生态的相互作用关系及其对健康和疾病的影响,以期为临床中使用抗生素的利弊权衡提供参考依据。
中图分类号:
栗冲, 王硕, 张志华. 抗生素与肠道微生态的关系[J]. 临床荟萃, 2021, 36(4): 374-378.
[1] |
Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease[J]. Clin J Gastroenterol, 2018,11(1):1-10.
doi: 10.1007/s12328-017-0813-5 URL |
[2] |
Meng C, Bai C, Brown TD, et al. Human gut microbiota and gastrointestinal cancer[J]. Genomics Proteomics Bioinformatics, 2018,16(1):33-49.
doi: 10.1016/j.gpb.2017.06.002 URL |
[3] |
Blaser MJ. Antibiotic use and its consequences for the normal microbiome[J]. Science, 2016,352(6285):544-545.
doi: 10.1126/science.aad9358 URL |
[4] |
Soldi S, Vasileiadis S, Uggeri F, et al. Modulation of the gut microbiota composition by rifaximin in non-constipated irritable bowel syndrome patients: A molecular approach[J]. Clin Exp Gastroenterol, 2015,8:309-325.
doi: 10.2147/CEG.S89999 pmid: 26673000 |
[5] |
Ponziani FR, Scaldaferri F, Petito V, et al. The role of antibiotics in gut microbiota modulation: The eubiotic effects of rifaximin[J]. Dig Dis, 2016,34(3):269-278.
doi: 10.1159/000443361 URL |
[6] |
Kim IS, Yoo DH, Jung IH, et al. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin[J]. Biochem Pharmacol, 2016,122:72-79.
doi: 10.1016/j.bcp.2016.09.023 URL |
[7] |
Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure[J]. Nat Microbiol, 2018,3(11):1255-1265.
doi: 10.1038/s41564-018-0257-9 pmid: 30349083 |
[8] |
Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: Between good and evil[J]. Gut, 2016,65(11):1906-1915.
doi: 10.1136/gutjnl-2016-312297 URL |
[9] | Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem?[J]. Front Microbiol, 2016,7:455. |
[10] |
Simonyte Sjödin K, Vidman L, Rydén P, et al. Emerging evidence of the role of gut microbiota in the development of allergic diseases[J]. Curr Opin Allergy Clin Immunol, 2016,16(4):390-395.
doi: 10.1097/ACI.0000000000000277 pmid: 27253486 |
[11] |
Korpela K, Salonen A, Virta LJ, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children[J]. Nat Commun, 2016,7:10410.
doi: 10.1038/ncomms10410 pmid: 26811868 |
[12] |
Iizumi T, Battaglia T, Ruiz V, et al. Gut microbiome and antibiotics[J]. Arch Med Res, 2017,48(8):727-734.
doi: 10.1016/j.arcmed.2017.11.004 URL |
[13] |
Vrieze A, Out C, Fuentes S, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity[J]. J Hepatol, 2014,60(4):824-831.
doi: 10.1016/j.jhep.2013.11.034 URL |
[14] |
Isanaka S, Langendorf C, Berthé F, et al. Routine amoxicillin for uncomplicated severe acute malnutrition in children[J]. N Engl J Med, 2016,374(5):444-453.
doi: 10.1056/NEJMoa1507024 URL |
[15] |
Arboleya S, Sánchez B, Solís G, et al. Impact of prematurity and perinatal antibiotics on the developing intestinal microbiota: A functional inference study[J]. Int J Mol Sci, 2016,17(5):649.
doi: 10.3390/ijms17050649 URL |
[16] |
Hwang I, Park YJ, Kim YR, et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity[J]. Faseb J, 2015,29(6):2397-2411.
doi: 10.1096/fsb2.v29.6 URL |
[17] |
Stewardson AJ, Gaïa N, François P, et al. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: A culture-free analysis of gut microbiota[J]. Clin Microbiol Infect, 2015, 21(4): 344.e1-11.
doi: 10.1016/j.cmi.2014.11.016 URL |
[18] |
Rashid MU, Zaura E, Buijs MJ, et al. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods[J]. Clin Infect Dis, 2015,60(Suppl 2):S77-84.
doi: 10.1093/cid/civ137 URL |
[19] |
Iizumi T, Taniguchi T, Yamazaki W, et al. Effect of antibiotic pre-treatment and pathogen challenge on the intestinal microbiota in mice[J]. Gut Pathog, 2016,8:60.
doi: 10.1186/s13099-016-0143-z URL |
[20] |
Agamennone V, Krul CAM, Rijkers G, et al. A practical guide for probiotics applied to the case of antibiotic-associated diarrhea in the netherlands[J]. BMC Gastroenterol, 2018,18(1):103.
doi: 10.1186/s12876-018-0831-x pmid: 30078376 |
[21] |
McFarland LV, Ozen M, Dinleyici EC, et al. Comparison of pediatric and adult antibiotic-associated diarrhea and clostridium difficile infections[J]. World J Gastroenterol, 2016,22(11):3078-104.
doi: 10.3748/wjg.v22.i11.3078 URL |
[22] |
Larcombe S, Hutton ML, Lyras D. Involvement of bacteria other than clostridium difficile in antibiotic-associated diarrhoea[J]. Trends Microbiol, 2016,24(6):463-476.
doi: 10.1016/j.tim.2016.02.001 URL |
[23] |
Monaghan TM, Cockayne A, Mahida YR. Pathogenesis of clostridium difficile infection and its potential role in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2015,21(8):1957-66.
doi: 10.1097/MIB.0000000000000461 URL |
[24] |
Vogt SL, Peña-Díaz J, Finlay BB. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens[J]. Anaerobe, 2015,34:106-15.
doi: 10.1016/j.anaerobe.2015.05.002 URL |
[25] |
GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med, 2017,377(1):13-27.
doi: 10.1056/NEJMoa1614362 URL |
[26] |
Li M, Xue H, Wang W, et al. Increased obesity risks for being an only child in China: Findings from a nationally representative study of 19, 487 children[J]. Public Health, 2017,153:44-51.
doi: S0033-3506(17)30229-9 pmid: 28843799 |
[27] |
Nogacka AM, Salazar N, Arboleya S, et al. Early microbiota, antibiotics and health[J]. Cell Mol Life Sci, 2018,75(1):83-91.
doi: 10.1007/s00018-017-2670-2 URL |
[28] |
Azad MB, Bridgman SL, Becker AB, et al. Infant antibiotic exposure and the development of childhood overweight and central adiposity[J]. Int J Obes (Lond), 2014,38(10):1290-1298.
doi: 10.1038/ijo.2014.119 pmid: 25012772 |
[29] |
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases[J]. Curr Neurol Neurosci Rep, 2017,17(12):94.
doi: 10.1007/s11910-017-0802-6 pmid: 29039142 |
[30] |
O'Mahony SM, Clarke G, Dinan TG, et al. Early-life adversity and brain development: Is the microbiome a missing piece of the puzzle?[J]. Neuroscience, 2017,342:37-54.
doi: S0306-4522(15)00895-7 pmid: 26432952 |
[31] |
Slykerman RF, Thompson J, Waldie KE, et al. Antibiotics in the first year of life and subsequent neurocognitive outcomes[J]. Acta Paediatr, 2017,106(1):87-94.
doi: 10.1111/apa.13613 URL |
[32] |
Leclercq S, Mian FM, Stanisz AM, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior[J]. Nat Commun, 2017,8:15062.
doi: 10.1038/ncomms15062 pmid: 28375200 |
[33] |
Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation[J]. Genome Med, 2016,8(1):39.
doi: 10.1186/s13073-016-0294-z pmid: 27074706 |
[34] |
Lapin B, Piorkowski J, Ownby D, et al. Relationship between prenatal antibiotic use and asthma in at-risk children[J]. Ann Allergy Asthma Immunol, 2015,114(3):203-207.
doi: 10.1016/j.anai.2014.11.014 URL |
[35] |
Hirsch AG, Pollak J, Glass TA, et al. Early-life antibiotic use and subsequent diagnosis of food allergy and allergic diseases[J]. Clin Exp Allergy, 2017,47(2):236-244.
doi: 10.1111/cea.12807 URL |
[36] | Stensballe LG, Simonsen J, Jensen SM, et al. Use of antibiotics during pregnancy increases the risk of asthma in early childhood[J]. J Pediatr, 2013, 162(4):832-838.e3. |
[37] |
Patrick DM, Sbihi H, Dai DLY, et al. Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: Evidence from population-based and prospective cohort studies[J]. Lancet Respir Med, 2020,8(11):1094-1105.
doi: 10.1016/S2213-2600(20)30052-7 URL |
[1] | 张森, 张新生, 王东祥. 多层螺旋CT联合血清Vanin-1水平预测COPD患者预后的临床价值[J]. 临床荟萃, 2025, 40(4): 339-343. |
[2] | 胡丽艳, 陈琳, 安艳新, 单婕, 高晓红, 吕佳宁, 尤佳伟. 膳食炎症指数与神经退行性疾病相关性的研究进展[J]. 临床荟萃, 2025, 40(4): 372-376. |
[3] | 刘巧, 宁春竹, 李彦希. 夫妻共患羊痘2例并文献复习[J]. 临床荟萃, 2025, 40(3): 266-269. |
[4] | 陈天浩, 黄正. 慢性肾脏病3~5期患者血清维生素K2检测的临床意义[J]. 临床荟萃, 2025, 40(2): 122-127. |
[5] | 周智明, 茹意, 李萍, 平芬. 多光谱照射联合常规治疗在慢性阻塞性肺疾病急性加重期患者中的临床应用[J]. 临床荟萃, 2025, 40(1): 27-32. |
[6] | 钟元, 孟风雷. 成人MOGAD 1例并文献复习[J]. 临床荟萃, 2025, 40(1): 70-75. |
[7] | 刘亚楠, 徐建杭, 詹明. 糖尿病肾脏疾病患者睡眠障碍和疼痛的研究进展[J]. 临床荟萃, 2025, 40(1): 76-81. |
[8] | 张雪, 王俊祥. 类风湿关节炎共病的研究进展[J]. 临床荟萃, 2025, 40(1): 86-89. |
[9] | 刘畅, 鲍晓雪, 刘辉明, 田雅玮, 李玉坤. 胰高血糖素样肽-1受体基因多态性的研究进展[J]. 临床荟萃, 2025, 40(1): 90-96. |
[10] | 朱洁云, 高敏, 黄春莉, 潘冬赞, 王俏燕, 陆钊. 慢性阻塞性肺疾病再入院风险预测模型的系统评价[J]. 临床荟萃, 2024, 39(9): 773-779. |
[11] | 高胜男, 张冉冉, 张羽曦, 高宁, 冯冰, 刘国强. 我国糖尿病神经病理性疼痛疾病负担及药物治疗进展[J]. 临床荟萃, 2024, 39(9): 842-846. |
[12] | 马苗苗, 王义艳, 温甜甜, 马丽群. 甘油三酯-葡萄糖指数与阻塞性睡眠呼吸暂停综合征相关性的研究进展[J]. 临床荟萃, 2024, 39(9): 851-854. |
[13] | 张中楼, 崔坤, 孟晋启. 运动保护心血管系统的研究进展[J]. 临床荟萃, 2024, 39(9): 855-860. |
[14] | 马剑楠, 陶杰, 桑大森, 吴寿岭, 张旗. 尿转铁蛋白与2型糖尿病人群新发心血管疾病的关系[J]. 临床荟萃, 2024, 39(8): 700-705. |
[15] | 焦菲, 姚治平, 王兰桂. 中枢神经系统棘球幼病(包虫病)癫痫发作的危险因素[J]. 临床荟萃, 2024, 39(8): 712-715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||