临床荟萃 ›› 2022, Vol. 37 ›› Issue (2): 178-181.doi: 10.3969/j.issn.1004-583X.2022.02.017
收稿日期:
2021-07-23
出版日期:
2022-02-20
发布日期:
2022-03-04
通讯作者:
李英
E-mail:Liyinghebei@126.com
Received:
2021-07-23
Online:
2022-02-20
Published:
2022-03-04
摘要:
近年来,随着生活习惯的改变及人口老龄化进程的加快,我国老年糖尿病患者数量逐渐增多。在老年糖尿病患者中,糖尿病肾病(diabetic nephropathy, DN)的发病率极高,已经成为严重影响老年患者生活质量的主要问题之一。然而,DN的发病机制尚不清楚, 有研究发现慢性炎症反应在DN的发生、发展中发挥着重要作用,而肠道菌群失调与DN慢性炎症的发生发展有着密不可分的关系。因此, 明确DN的发病机制、寻找有效的防治措施备受关注,本文就老年DN患者肠道菌群失调的研究进展做一综述。
中图分类号:
杜菲, 李英. 老年糖尿病肾病患者肠道菌群失调的研究进展[J]. 临床荟萃, 2022, 37(2): 178-181.
[1] |
Verma A, Patel AB, Upadhyay A, et al. Credence: Significant victory for diabetic kidney disease[J]. Trends Endocrinol Metab, 2020,31(6):391-393.
doi: 10.1016/j.tem.2020.04.002 URL |
[2] |
Lu CC, Ma KL, Ruan XZ, et al. Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy[J]. Int J Med Sci, 2018,15(8):816-822.
doi: 10.7150/ijms.25543 URL |
[3] | 张青, 刘旭生, 张蕾. 糖尿病肾脏病患者肠道菌群紊乱的发生发展机制[J]. 世界科学技术-中医药现代化, 2020,22(9):3235-3240. |
[4] |
Nallu A, Sharma S, Ramezani A, et al. Gut microbiome in chronic kidney disease: Challenges and opportunities[J]. Transl Res. 2017,179:24-37.
doi: 10.1016/j.trsl.2016.04.007 URL |
[5] | 李雷, 杨云梅, 吴月. 老年2型糖尿病患者肠道菌群多样性及其炎症因子与胰岛素抵抗的相关性研究[J]. 中华危重症医学杂志 (电子版), 2018,11(5):316-321. |
[6] |
Xu KY, Xia GH, Lu JQ, et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients[J]. Sci Rep, 2017,7(1):1445.
doi: 10.1038/s41598-017-01387-y URL |
[7] |
Felizardo RJF, Castoldi A, Andrade-Oliveira V, et al. The microbiota and chronic kidney diseases: A double-edged sword[J]. Clin Transl Immunol, 2016,5(6):e86.
doi: 10.1038/cti.2016.36 URL |
[8] | Chen Z, Zhu S, Xu G. Targeting gut microbiota: A potential promising therapy for diabetic kidney disease[J]. Am J Transl Res, 2016,8(10):4009-4016. |
[9] |
Pluznick JL. Gut microbiota in renal physiology: Focus on short-chain fatty acids and their receptors[J]. Kidney Int, 2016,90(6):1191-1198.
doi: 10.1016/j.kint.2016.06.033 URL |
[10] |
Ikee R, Sasaki N, Yasuda T, et al. Chronic kidney disease, gut dysbiosis, and Constipation: A Burdensome triplet[J]. Microorganisms, 2020,8(12):1862.
doi: 10.3390/microorganisms8121862 URL |
[11] |
Zhao J, Ning X, Liu B, et al. Specific alterations in gut microbiota in patients with chronic kidney disease: An updated systematic review[J]. Ren Fail, 2021,43(1):102-112.
doi: 10.1080/0886022X.2020.1864404 pmid: 33406960 |
[12] |
Muskiet MH, Smits MM, Morsink LM, et al. The gut-renal axis: Do incretin-based agents confer renoprotection in diabetes?[J]. Nat Rev Nephrol, 2014,10(2):88-103.
doi: 10.1038/nrneph.2013.272 pmid: 24375052 |
[13] |
Kim YA, Keogh JB, Clifton PM. Probiotics, prebiotics, synbiotics and insulin sensitivity[J]. Nutr Res Rev, 2018,31(1):35-51.
doi: 10.1017/S095442241700018X pmid: 29037268 |
[14] |
Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008,57(6):1470-1481.
doi: 10.2337/db07-1403 URL |
[15] |
Devaraj S, Dasu MR, Park SH, et al. Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes[J]. Diabetologia, 2009,52(8):1665-1668.
doi: 10.1007/s00125-009-1394-8 pmid: 19455302 |
[16] |
Devaraj S, Dasu MR, Rockwood J, et al. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: Further evidence of a proinflammatory state[J]. J Clin Endocrinol Metab, 2018,93(2):578-583.
doi: 10.1210/jc.2007-2185 URL |
[17] |
Liang H, Hussey SE, Sanchez-Avila A, et al. Effect of lipopolysaccharide on inflammation and insulin action in human muscle[J]. PLoS One, 2013,8(5):e63983.
doi: 10.1371/journal.pone.0063983 URL |
[18] | Chen Z, Zhu S, Xu G. Targeting gut microbiota: A potential promising therapy for diabetic kidney disease[J]. Am J Transl Res, 2016,8(10):4009-4016. |
[19] |
Lafferty RA, Flatt PR, Irwin N. Emerging therapeutic potential for peptide YY for obesity-diabetes[J]. Peptides, 2018,100:269-274.
doi: S0196-9781(17)30336-4 pmid: 29412828 |
[20] |
Shen L, Ao L, Xu H, et al. Poor short-term glycemic control in patients with type 2 diabetes impairs the intestinal mucosal barrier: A prospective, single-center, observational study[J]. BMC Endocr Disord, 2019,19(1):29.
doi: 10.1186/s12902-019-0354-7 URL |
[21] | Wu TK, Lim PS, Jin JS, et al. Impaired gut epithelial tight junction expression in hemodialysis patients complicated with intradialytic hypotension[J]. Biomed Res Int, 2018 16, 2018: 2670312. |
[22] |
Atoh K, Itoh H, Haneda M. Serum indoxyl sulfate levels in patients with diabetic nephropathy: Relation to renal function[J]. Diabetes Res Clin Pract, 2009,83(2):220-226.
doi: 10.1016/j.diabres.2008.09.053 URL |
[23] |
Sun CY, Hsu HH, Wu MS.p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells[J]. Nephrol Dial Transplant, 2013,28(1):70-78.
doi: 10.1093/ndt/gfs133 URL |
[24] |
Bolati D, Shimizu H, Yisireyili M, et al. Indoxyl sulfate, a uremic toxin, downregulates renal expression of Nrf2 through activation of NF-κB[J]. BMC Nephrol, 2013,14:56.
doi: 10.1186/1471-2369-14-56 URL |
[25] |
Adesso S, Magnus T, Cuzzocrea S, et al. Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: Interaction between astrocytes and microglia[J]. Front Pharmacol, 2017,8:370.
doi: 10.3389/fphar.2017.00370 URL |
[26] |
Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition[J]. PLoS One, 2012,7(3):e34026.
doi: 10.1371/journal.pone.0034026 URL |
[27] |
Fernandes ALF, Borges NA, Black AP, et al. Dietary intake of tyrosine and phenylalanine, and p-cresyl sulfate plasma levels in non-dialyzed patients witchronic kidney disease[J]. J Bras Nefrol, 2020,42(3):307-314.
doi: 10.1590/2175-8239-jbn-2018-0214 URL |
[28] |
Niewczas MA, Sirich TL, Mathew AV, et al. Uremic solutes and risk of end-stage renal disease in type 2 diabetes: Metabolomic study[J]. Kidney Int, 2014,85(5):1214-1224.
doi: 10.1038/ki.2013.497 pmid: 24429397 |
[29] |
Watanabe H, Miyamoto Y, Honda D, et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidas[J]. Kidney Int, 2013,83(4):582-592.
doi: 10.1038/ki.2012.448 pmid: 23325087 |
[30] |
Gruppen EG, Garcia E, Connelly MA, et al. TMAO is associated with mortality: Impact of modestly impaired renal function[J]. Sci Rep, 2017,7(1):13781.
doi: 10.1038/s41598-017-13739-9 pmid: 29061990 |
[31] | Ma G, Pan B, Chen Y, et al. Trimethylamine N-oxide in atherogenesis: Impairing endothelial self-repair capacity and enhancing monocyte adhesion[J]. Biosci Rep, 2017,37(2):BSR20160244. |
[32] | Oellgaard J, Winther SA, Hansen TS, et al. Trimethylamine N-oxide(TMAO) as a new potential therapeutic target for insulin resistance and cancer[J]. Curr Pharm Des, 2017,23(25):3699-3712. |
[33] |
Sun G, Yin Z, Liu N, et al. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity[J]. Biochem Biophys Res Commun, 2017,493(2):964-970.
doi: 10.1016/j.bbrc.2017.09.108 URL |
[34] |
Zhang W, Miikeda A, Zuckerman J, et al. Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice[J]. Sci Rep, 2021,11(1):518.
doi: 10.1038/s41598-020-80063-0 URL |
[35] |
Gupta N, Buffa JA, Roberts AB, et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease[J]. Arterioscler Thromb Vasc Biol, 2020,40(5):1239-1255.
doi: 10.1161/ATVBAHA.120.314139 URL |
[36] |
Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease[J]. Kidney Int, 2015,88(5):958-966.
doi: 10.1038/ki.2015.255 URL |
[37] |
Jia L, Dong X, Li X, et al. Benefits of resistant starch type 2 for patients with end-stage renal disease under maintenance hemodialysis: A systematic review and meta-analysis[J]. Int J Med Sci, 2021,18(3):811-820.
doi: 10.7150/ijms.51484 URL |
[38] |
Koh GY, Rowling MJ. Resistant starch as a novel dietary strategy to maintain kidney health in diabetes mellitus[J]. Nutr Rev, 2017,75(5):350-360.
doi: 10.1093/nutrit/nux006 URL |
[39] |
Liu WC, Tomino Y, Lu KC. Impacts of Indoxyl Sulfate and p-Cresol Sulfate on Chronic Kidney Disease and Mitigating Effects of AST-120[J]. Toxins (Basel), 2018,10(9):367.
doi: 10.3390/toxins10090367 URL |
[40] |
Ramezani A, Massy ZA, Meijers B, et al. Role of the gut microbiome in uremia: A potential therapeutic target[J]. Am J Kidney Dis, 2016,67(3):483-498.
doi: 10.1053/j.ajkd.2015.09.027 pmid: 26590448 |
[41] |
Li DY, Tang WHW. Contributory role of gut microbiota and their metabolites toward cardiovascular complications in chronic kidney disease[J]. Semin Nephrol, 2018,38(2):193-205.
doi: 10.1016/j.semnephrol.2018.01.008 URL |
[42] |
Wu J, Zhang YY, Guo L, et al. Bupleurum polysaccharides attenuates lipopolysaccharide-induced inflammation via modulating Toll-like receptor 4 signaling[J]. PLoS One, 2013,8(10):e78051.
doi: 10.1371/journal.pone.0078051 URL |
[43] |
Pan L, Weng H, Li H, et al. Therapeutic effects of bupleurum polysaccharides in streptozotocin induced diabetic mice[J]. PLoS One, 2015,10(7):e0133212.
doi: 10.1371/journal.pone.0133212 URL |
[44] |
Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: Techniques, indications, and outcomes[J]. Gastrointest Endosc, 2013,78(2):240-249.
doi: 10.1016/j.gie.2013.03.1329 URL |
[45] |
Zhou D, Pan Q, Shen F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J]. Sci Rep, 2017,7(1):1529.
doi: 10.1038/s41598-017-01751-y pmid: 28484247 |
[1] | 胡丽艳, 陈琳, 安艳新, 单婕, 高晓红, 吕佳宁, 尤佳伟. 膳食炎症指数与神经退行性疾病相关性的研究进展[J]. 临床荟萃, 2025, 40(4): 372-376. |
[2] | 李登峰, 黄家虎, 李廷俊, 吕勇, 金珍珍, 连少峰. 基于肺部超声评分的儿童难治性肺炎支原体肺炎预测模型的构建[J]. 临床荟萃, 2025, 40(2): 153-157. |
[3] | 刘翠翠, 朱亚芳, 吕文娟. 不同HRCT表型COPD患者戒烟后肺功能、炎性因子和临床症状变化[J]. 临床荟萃, 2024, 39(7): 625-629. |
[4] | 王忠奇, 李今朝, 吴南. 急性冠脉综合征患者全身免疫炎症指数与冠状动脉病变严重程度的相关性[J]. 临床荟萃, 2024, 39(6): 512-517. |
[5] | 马千里. 岩藻黄素在认知障碍类疾病中的研究进展[J]. 临床荟萃, 2024, 39(6): 572-576. |
[6] | 延天美, 吴亚楠, 梁鹏, 魏立民. 粪便微生物移植:肥胖患者减重的新方案[J]. 临床荟萃, 2024, 39(5): 455-459. |
[7] | 王娇燕, 严超, 应可净. 气道慢性炎症性疾病并发静脉血栓栓塞症的研究进展[J]. 临床荟萃, 2024, 39(5): 470-474. |
[8] | 王春杰, 谢静, 韩雪, 吴丹, 陈建华. 个体化血液透析对老年糖尿病肾病患者透析并发症的影响[J]. 临床荟萃, 2024, 39(4): 332-336. |
[9] | 王淑亮, 苏永峰. 肠道菌群在2型糖尿病中的研究进展[J]. 临床荟萃, 2024, 39(3): 274-278. |
[10] | 王先耀, 施荣杰, 龙均, 字颖. 膳食炎症指数在慢性疾病中的应用现状[J]. 临床荟萃, 2024, 39(3): 284-288. |
[11] | 张晓璐, 李红山. 自身免疫性肝炎发病机制研究进展——聚焦“肠道菌群与免疫系统相互作用”[J]. 临床荟萃, 2024, 39(2): 177-182. |
[12] | 陈颖新, 王韶轩. JAK/STAT信号通路在消化系统疾病中的研究进展[J]. 临床荟萃, 2024, 39(12): 1125-1130. |
[13] | 梁祎. 姜黄素对2型糖尿病患者炎症及氧化应激影响的meta分析[J]. 临床荟萃, 2024, 39(11): 974-979. |
[14] | 王欢, 沈婷, 孔颖宏, 居悦俊. 女性糖尿病神经源性膀胱患者抗氧化和炎症因子水平及其临床意义[J]. 临床荟萃, 2024, 39(11): 984-988. |
[15] | 李佳文, 刘艳兰, 李瑶霜, 邱慧娜, 李芳, 毋帆, 林辰莹, 林静娜. 2型糖尿病患者TyG指数及其衍生指数与糖尿病肾病风险的相关性[J]. 临床荟萃, 2024, 39(10): 901-908. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||