临床荟萃 ›› 2021, Vol. 36 ›› Issue (5): 471-475.doi: 10.3969/j.issn.1004-583X.2021.05.017
收稿日期:
2020-09-23
出版日期:
2021-05-20
发布日期:
2021-06-09
通讯作者:
张惠莉
E-mail:Email: 810546233@qq.com
Received:
2020-09-23
Online:
2021-05-20
Published:
2021-06-09
摘要:
血糖监测贯穿于糖尿病治疗和疗效评估的全过程,为糖尿病管理的重要组成部分。近年来,随着连续血糖监测技术(CGM)的逐步应用,出现了很多评估血糖控制水平的新指标,血糖的目标范围时间(time in range, TIR)便是其中之一。TIR是指血糖水平在目标范围(通常为3.9~10.0 mmol/L)时间内的百分比,通常以TIR >70%为控制目标。在临床应用中,TIR不仅可以弥补传统血糖监测的不足,也为糖尿病患者个体化控糖提供了新的支持,而且可以预测糖尿病慢性并发症的风险。不过,当下广泛应用TIR作为评判血糖控制的主要手段仍存在一些障碍,需要进一步完善和发展。本文将围绕糖尿病患者TIR临床应用价值,对TIR的定义和范围、控制目标以及在糖尿病患者血糖管理中的定位等几方面进行综述,为个体化的血糖管理提供新思路。
中图分类号:
王艳, 张惠莉. 糖尿病患者TIR的临床应用价值研究进展[J]. 临床荟萃, 2021, 36(5): 471-475.
[1] |
Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993, 329(14):977-986.
doi: 10.1056/NEJM199309303291401 URL |
[2] | 中华医学会糖尿病学分会. 中国血糖监测临床应用指南(2015年版)[J]. 中华糖尿病杂志, 2015, 7(10):603-613. |
[3] |
Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring[J]. Diabetes Care, 2017, 40(12):1631-1640.
doi: 10.2337/dc17-1600 URL |
[4] |
Runge AS, Kennedy L, Brown AS, et al. Does time-in-range matter perspectives from people with diabetes on the success of current therapies and the drivers of improved outcomes[J]. Clinical Diabetes, 2018, 36(2):112-119.
doi: 10.2337/cd17-0094 pmid: 29686449 |
[5] | 陈莉明. 技术引领科研,循证助力指南:血糖监测研究新进展[J]. 中华糖尿病杂志, 2020, 12(1):21-24. |
[6] |
Beck RW, Connor CG, Mullen DM, et al. The fallacy of average: How using HbA1c alone to assess glycemic control can be misleading[J]. Diabetes Care, 2017, 40(8):994-999.
doi: 10.2337/dc17-0636 pmid: 28733374 |
[7] |
Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the international consensus on time in range[J]. Diabetes Care, 2019, 42(8):1593-1603.
doi: 10.2337/dci19-0028 pmid: 31177185 |
[8] |
Beyond A1C Writing Group. Need for regulatory change to incorporate beyond A1C glycemic metrics[J]. Diabetes Care, 2018, 41(6):e92-e94.
doi: 10.2337/dci18-0010 URL |
[9] |
Agiostratidou G, Anhalt H, Ball D, et al. Standardizing clinically meaningful outcome measures beyond HbA1c for type 1 diabetes: A consensus report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Society, JDRF International, The Leona M. and Harry B. Helmsley Charitable Trust, the Pediatric Endocrine Society, and the T1D Exchange[J]. Diabetes Care, 2017, 40(12):1622-1630.
doi: 10.2337/dc17-1624 pmid: 29162582 |
[10] |
Rhee MK, Ho YL, Raghavan S, et al. Random plasma glucose predicts the diagnosis of diabetes[J]. PLoS One, 2019, 14(7):e0219964.
doi: 10.1371/journal.pone.0219964 URL |
[11] |
International Hypoglycaemia Study Group. Glucose concentrations of less than 3.0 mmol/l (54 mg/dl) should be reported in clinical trials: A joint position statement of the American diabetes association and the european association for the study of diabetes[J]. Diabetologia, 2017, 60(1):3-6.
doi: 10.1007/s00125-016-4146-6 URL |
[12] |
American Diabetes Association.14. Management of diabetes in pregnancy: Standards of medical care in diabetes-2019[J]. Diabetes Care, 2019, 42(Suppl 1):S165-S172.
doi: 10.2337/dc19-S014 URL |
[13] |
Feig DS, Donovan LE, Corcoy R, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): A multicentre international randomised controlled trial[J]. Lancet, 2017, 390(10110):2347-2359.
doi: 10.1016/S0140-6736(17)32400-5 URL |
[14] |
Kristensen K, Ogge LE, Sengpiel V, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes: An observational cohort study of 186 pregnancies[J]. Diabetologia, 2019, 62(7):1143-1153.
doi: 10.1007/s00125-019-4850-0 pmid: 30904938 |
[15] |
Kovatchev BP. Metrics for glycaemic control - from HbA1c to continuous glucose monitoring[J]. Nat Rev Endocrinol, 2017, 13(7):425-436.
doi: 10.1038/nrendo.2017.3 pmid: 28304392 |
[16] |
Vigersky RA, McMahon C. The relationship of hemoglobin A1C to time-in-range in patients with diabetes[J]. Diabetes Technol Ther, 2019, 21(2):81-85.
doi: 10.1089/dia.2018.0310 URL |
[17] |
Hirsch IB, Welsh JB, Calhoun P, et al. Associations between HbA1c and continuous glucose monitoring-derived glycaemic variables[J]. Diabet Med, 2019, 36(12):1637-1642.
doi: 10.1111/dme.v36.12 URL |
[18] |
Cryer PE. Glycemic goals in diabetes: Trade-off between glycemic control and iatrogenic hypoglycemia[J]. Diabetes, 2014, 63(7):2188-2195.
doi: 10.2337/db14-0059 URL |
[19] |
Bergenstal RM. Glycemic variability and diabetes complications: Does it matter Simply put, there are better glycemic markers![J] Diabetes Care, 2015, 38(8):1615-1621.
doi: 10.2337/dc15-0099 pmid: 26207055 |
[20] |
Rodbard D. Display of glucose distributions by date, time of day, and day of week: New and improved methods[J]. J Diabetes Sci Technol, 2009, 3(6):1388-1394.
pmid: 20144393 |
[21] |
Lu J, Ma X, Zhou J, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes[J]. Diabetes Care, 2018, 41(11) :2370-2376.
doi: 10.2337/dc18-1131 URL |
[22] |
Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of time in range as an outcome measure for diabetes clinical trials[J]. Diabetes Care, 2019, 42(3):400-405.
doi: 10.2337/dc18-1444 pmid: 30352896 |
[23] |
Mayeda L, Katz R, Ahmad I, et al. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease[J]. BMJ Open Diabetes Res Care, 2020, 8(1):e000991.
doi: 10.1136/bmjdrc-2019-000991 URL |
[24] |
Beck RW, Bergenstal RM, Cheng P, et al. The relationships between time in range, hyperglycemia metrics, and HbA1c[J]. J Diabetes Sci Technol, 2019, 13(4):614-626.
doi: 10.1177/1932296818822496 pmid: 30636519 |
[25] |
Murphy HR. Continuous glucose monitoring targets in type 1 diabetes pregnancy: Every 5% time in range matters[J]. Diabetologia, 2019, 62(7):1123-1128.
doi: 10.1007/s00125-019-4904-3 pmid: 31161344 |
[26] |
Vos FE, Schollum JB, Coulter CV, et al. Assessment of markers of glycaemic control in diabetic patients with chronic kidney disease using continuous glucose monitoring[J]. Nephrology (Carlton), 2012, 17(2):182-188.
doi: 10.1111/nep.2012.17.issue-2 URL |
[27] |
Bergenstal RM, Gal RL, Connor CG, et al. Racial differences in the relationship of glucose concentrations and hemoglobin A1c levels[J]. Ann Intern Med, 2017, 167(2):95-102.
doi: 10.7326/M16-2596 pmid: 28605777 |
[28] |
Cohen RM, Franco RS, Smith EP, et al. When HbA1c and blood glucose do not match: How much is determined by race, by genetics, by differences in mean red blood cell age?[J]. J Clin Endocrinol Metab, 2019, 104(3):707-710.
doi: 10.1210/jc.2018-02409 URL |
[29] |
Brahimi N, Potier L, Mohammedi K. Cutaneous adverse events related to FreeStyle Libre device[J]. Lancet, 2017, 389(10077):1396.
doi: 10.1016/S0140-6736(17)30896-6 |
[30] |
Herman A, Aerts O, Baeck M, et al. Allergic contact dermatitis caused by isobornyl acrylate in Freestyle(R) Libre, a newly introduced glucose sensor[J]. Contact Dermatitis, 2017, 77(6):367-373.
doi: 10.1111/cod.12866 pmid: 28804907 |
[31] |
Tanenbaum ML, Hanes SJ, Miller KM, et al. Diabetes device use in adults with type 1 diabetes: Barriers to uptake and potential intervention targets[J]. Diabetes Care, 2017, 40(2):181-187.
doi: 10.2337/dc16-1536 pmid: 27899489 |
[32] |
Pickup JC, Freeman SC, Sutton AJ. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: Meta-analysis of randomised controlled trials using individual patient data[J]. BMJ, 2011, 343:d3805.
doi: 10.1136/bmj.d3805 URL |
[33] |
Vigersky RA, Shin J, Jiang B, et al. The comprehensive glucose pentagon: A glucose-centric composite metric for assessing glycemic control in persons with diabetes[J]. J Diabetes Sci Technol, 2018, 12(1):114-123.
doi: 10.1177/1932296817718561 pmid: 28748705 |
[34] |
Hempe JM, Liu S, Myers L, et al. The hemoglobin glycation index identifies subpopulations with harms or benefits from intensive treatment in the ACCORD trial[J]. Diabetes Care, 2015, 38(6):1067-1074.
doi: 10.2337/dc14-1844 URL |
[35] |
Peyser TA, Balo AK, Buckingham BA, et al. Glycemic variability percentage: A novel method for assessing glycemic variability from continuous glucose monitor data[J]. Diabetes Technol Ther, 2018, 20(1):6-16.
doi: 10.1089/dia.2017.0187 URL |
[36] |
Rodbard D. Metrics to evaluate quality of glycemic control: Comparison of time in target, hypoglycemic, and hyperglycemic ranges with “risk indices”[J]. Diabetes Technol Ther, 2018, 20(5):325-334.
doi: 10.1089/dia.2017.0416 URL |
[1] | 琚盼雨, 杨富琦, 周兴建. 2型糖尿病患者TyG指数与甲状腺结节的关联性[J]. 临床荟萃, 2025, 40(4): 329-333. |
[2] | 曾坚, 王小敏, 方木通, 卢水华. 《世界卫生组织结核病操作手册模块6:结核病及其共患病》(第3版)解读[J]. 临床荟萃, 2025, 40(3): 270-274. |
[3] | 胡松林, 邸雅, 刘灿章, 闫杰. 应用虚拟组织学血管内超声探讨血小板/淋巴细胞比值水平与冠心病合并2型糖尿病患者冠状动脉斑块特点的关系[J]. 临床荟萃, 2025, 40(2): 117-121. |
[4] | 史双伟, 饶小娟, 解丽然, 方一凡, 王姗姗. 甲状腺功能正常的2型糖尿病患者甲状腺激素敏感性与非酒精性脂肪肝的相关性[J]. 临床荟萃, 2025, 40(2): 133-137. |
[5] | 刘亚楠, 徐建杭, 詹明. 糖尿病肾脏疾病患者睡眠障碍和疼痛的研究进展[J]. 临床荟萃, 2025, 40(1): 76-81. |
[6] | 高胜男, 张冉冉, 张羽曦, 高宁, 冯冰, 刘国强. 我国糖尿病神经病理性疼痛疾病负担及药物治疗进展[J]. 临床荟萃, 2024, 39(9): 842-846. |
[7] | 马剑楠, 陶杰, 桑大森, 吴寿岭, 张旗. 尿转铁蛋白与2型糖尿病人群新发心血管疾病的关系[J]. 临床荟萃, 2024, 39(8): 700-705. |
[8] | 熊璐, 郭莲. 2型糖尿病患者25(OH)D和SUA/SCr与合并非酒精性脂肪肝的相关性[J]. 临床荟萃, 2024, 39(8): 706-711. |
[9] | 张孟辉, 王新颖, 王树松, 帖彦清. 锌稳态在糖尿病及并发症中的作用[J]. 临床荟萃, 2024, 39(8): 758-762. |
[10] | 岳江红, 王恒, 蔡钢, 张选明, 彭曦. 索格列净治疗2型糖尿病疗效和安全性的meta分析[J]. 临床荟萃, 2024, 39(7): 581-592. |
[11] | 延天美, 吴亚楠, 刘月影, 魏立民. 甘油三酯葡萄糖指数联合肥胖指标与糖尿病视网膜病变的相关性[J]. 临床荟萃, 2024, 39(7): 612-619. |
[12] | 杜斯娜, 李伟, 林雅静, 孙建国, 毛毛, 陈坚伟, 孙丹波, 毛玉山. 2型糖尿病胰岛素泵强化治疗后胰岛素剂量谱的分析及应用[J]. 临床荟萃, 2024, 39(7): 620-624. |
[13] | 高姊璇, 刘建凤. 成人糖尿病分型及应用研究进展[J]. 临床荟萃, 2024, 39(7): 650-653. |
[14] | 王翔, 林仿, 励丽, 孙杰辉. 血清血管生成素样蛋白2与2型糖尿病性视网膜病变的关系[J]. 临床荟萃, 2024, 39(6): 501-505. |
[15] | 孙辉, 刘海英, 任俊豪, 李锦霞. 欧洲人群体质指数与2型糖尿病因果关系的双向孟德尔随机化研究[J]. 临床荟萃, 2024, 39(4): 325-331. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||