[1] |
杨凡. 白细胞介素-6在腹膜透析相关并发症中的作用研究进展[J]. 临床肾脏病杂志, 2021, 21(6): 512-515.
|
[2] |
Berke I, Barutcu Atas D, Tugcu M, et al. Clinical outcomes in peritoneal dialysis with refractory peritonitis: Significance of the day 5 cell count[J]. Clin Exp Nephrol, 2025, 29(2):221-226.
|
[3] |
Ronquillo JG, Lester WT. Precision medicine landscape of genomic testing for patients with cancer in the national institutes of health all of us database using informatics approaches[J]. JCO Clin Cancer Inform, 2022, 6:e2100152.
|
[4] |
Chen J, Zheng QY, Wang LM, et al. Proteomics reveals defective peroxisomal fatty acid oxidation during the progression of acute kidney injury and repair[J]. Heliyon, 2023, 9(7):e18134.
|
[5] |
Wei L, Han Y, Tu C. Molecular pathways of diabetic kidney disease inferred from proteomics[J]. Diabetes Metab Syndr Obes, 2023, 16:117-128.
|
[6] |
Sheela Devi C, et al. Vivian Joseph Ratnam P, Ramya SR, Detection of 16S rRNA gene for rapid identification of bacterial pathogens causing peritonitis in patients on continuous ambulatory peritoneal dialysis[J]. Indian J Med Microbiol, 2022, 40(3):409-412.
|
[7] |
Tang X, Zheng W, Hu J, et al. Proteomics-based analysis of potential therapeutic targets in patients with peritoneal dialysis-associated peritonitis[J]. Biochim Biophys Acta Proteins Proteom, 2022, 1870(7):140796.
|
[8] |
Fang J, Tong Y, Ji O, et al. Glycoprotein 96 in peritoneal dialysis effluent-derived extracellular vesicles: A tool for evaluating peritoneal transport properties and inflammatory status[J]. Front Immunol, 2022, 13:824278.
|
[9] |
郑婕, 罗娟, 彭凤, 等. 腹膜透析患者不同腹膜转运功能与炎症因子、VEGF的相关性研究[J]. 检验医学与临床, 2022, 19(19):2617-2619.
|
[10] |
马粜娟, 吴晓庆, 朱燕亭, 等. 腹膜功能障碍的评估及诊治进展[J]. 中国血液净化, 2022, 21(12):907-911.
|
[11] |
Bao M, Sun Z, Yang X, et al. Orosomucoid can predict baseline peritoneal transport characteristics in peritoneal dialysis patients and reduce peritoneal proteins loss[J]. J Proteomics, 2021, 242:104260.
|
[12] |
Ferrantelli E, Farhat K, Ederveen ALH, et al. Effluent and serum protein N-glycosylation is associated with inflammation and peritoneal membrane transport characteristics in peritoneal dialysis patients[J]. Sci Rep, 2018, 8(1):979.
doi: 10.1038/s41598-018-19147-x
pmid: 29343697
|
[13] |
Kondou A, Begou O, Dotis J, et al. Impact of metabolomics technologies on the assessment of peritoneal membrane profiles in peritoneal dialysis patients: A systematic review[J]. Metabolites, 2022, 12(2): 145.
|
[14] |
Ramil-Gómez O, López-Pardo M, Fernández-Rodríguez JA, et al. Involvement of mitochondrial dysfunction in the inflammatory response in human mesothelial cells from peritoneal dialysis effluent[J]. Antioxidants (Basel), 2022, 11(11):2184.
|
[15] |
Zhang Y, Feng W, Peng X, et al. Parthenolide alleviates peritoneal fibrosis by inhibiting inflammation via the NF-κB/ TGF-β/Smad signaling axis[J]. Lab Invest, 2022, 102(12):1346-1354.
doi: 10.1038/s41374-022-00834-3
pmid: 36307537
|
[16] |
Jiang N, Zhang Q, Chau MK, et al. Anti-fibrotic effect of decorin in peritoneal dialysis and PD-associated peritonitis[J]. EBioMedicine, 2020,52:102661.
|
[17] |
Huang SH, Hong ZJ, Chen MF, et al. Melatonin inhibits the formation of chemically induced experimental encapsulating peritoneal sclerosis through modulation of T cell differentiation by suppressing of NF-κB activation in dendritic cells[J]. Int Immunopharmacol, 2024,126:111300.
|
[18] |
Guo Y, Wang L, Gou R, et al. Ameliorative role of SIRT1 in peritoneal fibrosis: An in vivo and in vitro study[J]. Cell Biosci, 2021, 11(1):79.
doi: 10.1186/s13578-021-00591-8
pmid: 33906673
|
[19] |
Mo M, Zeng Y, Zeng Y, et al. N-methylpiperazine-diepoxyovatodiolide ameliorates peritoneal fibrosis via suppressing TGF-β/Smad and JAK/STAT signaling pathway[J]. Chem Biol Interact, 2023, 382:110589.
|
[20] |
Zhang J, Chen Y, Chen T, et al. Single-cell transcriptomics provides new insights into the role of fibroblasts during peritoneal fibrosis[J]. Clin Transl Med, 2021, 11(3):e321.
doi: 10.1002/ctm2.321
pmid: 33784014
|
[21] |
Huang Q, Sun Y, Peng L, et al. Extracellular vesicle-packaged ILK from mesothelial cells promotes fibroblast activation in peritoneal fibrosis[J]. J Extracell Vesicles, 2023, 12(7):e12334.
|
[22] |
Kang Y, Liu Y, Fu P, et al. Peritoneal fibrosis:From pathophysiological mechanism to medicine[J]. Front Physiol, 2024, 15:1438952.
|
[23] |
Li N, Fu J, Wang Q, et al. MiR-454-3p regulates high glucose-induced mesothelial-mesenchymal transition and glycolysis in peritoneal mesothelial cells by targeting STAT3[J]. Ren Fail, 2024, 46(2):2394635.
|
[24] |
Han SM, Ryu HM, Suh J, et al. Network-based integrated analysis of omics data reveal novel players of TGF-β1-induced EMT in human peritoneal mesothelial cells[J]. Sci Rep, 2019, 9(1):1497.
doi: 10.1038/s41598-018-37101-9
pmid: 30728376
|
[25] |
姚玲, 邵小琪, 何萌萌, 等. Galectin-3在腹膜透析液中的表达及其临床意义研究[J]. 安徽医科大学学报, 2024, 59(5):889-893.
|
[26] |
Evgeniou M, Sacnun JM, Kratochwill K, et al. A meta-analysis of human transcriptomics data in the context of peritoneal dialysis identifies novel receptor-ligand interactions as potential therapeutic targets[J]. Int J Mol Sci, 2021, 22(24):13277.
|