临床荟萃 ›› 2023, Vol. 38 ›› Issue (8): 757-762.doi: 10.3969/j.issn.1004-583X.2023.08.015
收稿日期:
2023-03-08
出版日期:
2023-08-20
发布日期:
2023-09-28
通讯作者:
肖小敏
E-mail:junxiaoxiaomin@163.com
Received:
2023-03-08
Online:
2023-08-20
Published:
2023-09-28
摘要:
糖尿病代谢异常、胰岛素抵抗、氧化应激等会引起肾脏、视网膜及神经等微血管并发症。开展糖尿病并发症防治措施不仅是国际医学研究的热点,也是我国糖尿病领域丞待解决的难题。黄芩苷是黄芩中提取出来的类黄酮化合物,是黄芩的有效生物活性成分之一,有抗肿瘤、抗菌及抗氧化等作用。近年来发现,黄芩苷对糖尿病及并发症有治疗作用,被认为是治疗糖尿病的有效中药,亦或成为治疗糖尿病的新兴药物。本文就目前黄芩苷治疗糖尿病合并肾脏疾病、糖尿病视网膜病变和糖尿病神经病变等常见并发症的作用机制进行总结,并阐述其在治疗妊娠合并糖尿病中的潜力,为糖尿病及其并发症治疗提供依据。
中图分类号:
马光宇, 罗慧娟, 王冬菊, 肖小敏. 黄芩苷治疗糖尿病及其并发症的研究进展[J]. 临床荟萃, 2023, 38(8): 757-762.
[1] |
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9 the dition[J]. Diabetes Res Clin Pract, 2019, 157:107843.
doi: 10.1016/j.diabres.2019.107843 URL |
[2] |
Kitada M, Zhang Z, Mima A, et al. Molecular mechanisms of diabetic vascular complications[J]. J Diabetes Investig, 2010, 1(3):77-89.
doi: 10.1111/j.2040-1124.2010.00018.x URL |
[3] | Zhao Q, Chen XY, Cathie M. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants[J]. Sci Bull (Beijing), 2016, 61(18):1391-1398. |
[4] | 田友清, 丁平, 燕宪海, 等. 对《中国药典》2005年版一部含牡丹皮制剂质量控制的探讨[J]. 中国中药杂志, 2008, 33(3):339-341. |
[5] |
Wei YM, Pi C, Yang G, et al. LC-UV determination of baicalin in rabbit plasma and tissues for application in pharmacokinetics and tissue distribution studies of baicalin after intravenous administration of liposomal and injectable formulations[J]. Molecules, 2016, 21(4):444.
doi: 10.3390/molecules21040444 pmid: 27104507 |
[6] |
Zhang R, Cui Y, Wang Y, et al. Catechol-o-methyltransferase and UDP glucuronosyltransferases in the metabolism of baicalein in different species[J]. Eur J Drug Metab Pharmacokinet, 2017, 42(6):981-992.
doi: 10.1007/s13318-017-0419-9 URL |
[7] |
Deng YX, Shi QZ, Chen B, et al. Comparative pharmacokinetics of baicalin in normal and the type 2 diabetic rats after oral administration of the radix scutellariae extract[J]. Fitoterapia, 2012, 83(8):1435-1442.
doi: 10.1016/j.fitote.2012.08.007 URL |
[8] | Xi YL, Li HX, Chen C, et al. Baicalin attenuates high fat diet-induced insulin resistance and ectopic fat storage in skeletal muscle, through modulating the protein kinase B/glycogen synthase kinase 3 beta pathway[J]. Chin J Nat Med, 2016, 14(1):48-55. |
[9] |
Fang P, Yu M, Min W, et al. Beneficial effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice[J]. Diabetes Res Clin Pract, 2018, 139:262-271.
doi: 10.1016/j.diabres.2018.03.007 URL |
[10] |
Fang P, Sun Y, Gu X, et al. Baicalin ameliorates hepatic insulin resistance and gluconeogenic activity through inhibition of p38 MAPK/PGC-1α pathway[J]. Phytomedicine, 2019, 64:153074.
doi: 10.1016/j.phymed.2019.153074 URL |
[11] |
Wang T, Jiang H, Cao S, et al. Baicalin and its metabolites suppresses gluconeogenesis through activation of AMPK or AKT in insulin resistant hepG-2 cells[J]. Eur J Med Chem, 2017, 141:92-100.
doi: S0223-5234(17)30764-X pmid: 29028535 |
[12] |
Jaldin-Fincati JR, Pavarotti M, Frendo CS, et al. Update on GLUT4 vesicle traffic: A cornerstone of insulin action[J]. Trends Endocrinol Metab, 2017, 28(8):597-611.
doi: 10.1016/j.tem.2017.05.002 URL |
[13] |
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature, 2001, 414(6865):799-806.
doi: 10.1038/414799a |
[14] |
Kuo YT, Lin CC, Kuo HT, et al. Identification of baicalin from bofutsushosan and daisaikoto as a potent inducer of glucose uptake and modulator of insulin signaling-associated pathways[J]. J Food Drug Anal, 2019, 27(1), 240-248.
doi: 10.1016/j.jfda.2018.07.002 URL |
[15] |
Fang P, Yu M, Min W, et al. Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats[J]. Life Sci, 2018, 196:156-161.
doi: S0024-3205(18)30028-6 pmid: 29459024 |
[16] |
You W, Wang K, Yu C, et al. Baicalin prevents tumor necrosis factor-α-induced apoptosis and dysfunction of pancreatic β-cell line Min6 via upregulation of miR-205[J]. J Cell Biochem, 2018, 119(10):8547-8554.
doi: 10.1002/jcb.27095 pmid: 30058243 |
[17] |
Yang M, Kan L, Wu L, et al. Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism[J]. Exp Ther Med, 2019, 17(3):2071-2076.
doi: 10.3892/etm.2019.7181 pmid: 30867693 |
[18] |
Azemi AK, Mokhtar SS, Hou LJ, et al. Model for type 2 diabetes exhibits changes in vascular function and structure due to vascular oxidative stress and inflammation[J]. Biotech Histochem, 2021, 96(7):498-506.
doi: 10.1080/10520295.2020.1823480 URL |
[19] |
Zhang DD. Mechanistic studies of the Nrf 2-Keap 1 signaling pathway[J]. Drug Metab Rev, 2006, 38(4):769-789.
doi: 10.1080/03602530600971974 URL |
[20] |
Chen G, Chen XJ, Niu C, et al. Baicalin alleviates hyperglycemia-induced endothelial impairment1viaNrf2[J]. J Endocrinol, 2019, 240(1):81-98.
doi: 10.1530/JOE-18-0457 URL |
[21] |
Waisundara VY, Siu SY, Hsu A, et al. Baicalin upregulates the genetic expression of antioxidant enzymes in type-2 diabetic goto-kakizaki rats[J]. Life Sci, 2011, 88(23-24):1016-1025.
doi: 10.1016/j.lfs.2011.03.009 pmid: 21439975 |
[22] |
Wang G, Liang J, Gao LR, et al. Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system[J]. Cell Death Dis, 2018, 9(2):234.
doi: 10.1038/s41419-018-0318-2 pmid: 29445081 |
[23] |
Huang Q, Liu Q, Ouyang DS. Sorbinil, an aldose reductase inhibitor, in fighting against diabetic complications[J]. Med Chem, 2019, 15(1):3-7.
doi: 10.2174/1573406414666180524082445 pmid: 29792152 |
[24] | Li XX, Zhao RM. Observation of the curative effect of liuwei dihuang pill on early diabetic nephropathy[J]. Med Innov Chin, 2011, 25:31-32. |
[25] |
Yang M, Kan L, Wu L, et al. Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism[J]. Exp Ther Med, 2019, 17(3):2071-2076.
doi: 10.3892/etm.2019.7181 pmid: 30867693 |
[26] |
Nam JE, Jo SY, Ahn CW, et al. Baicalin attenuates fibrogenic process in human renal proximal tubular cells (HK-2) exposed to diabetic milieu[J]. Life Sci, 2020, 254:117742.
doi: 10.1016/j.lfs.2020.117742 URL |
[27] |
Xu J, Kitada M, Ogura Y, et al. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells[J]. Cells, 2021, 10(6):1457.
doi: 10.3390/cells10061457 URL |
[28] |
Qian Y, Chen Y, Wang L, et al. Effects of baicalin on inflammatory reaction, oxidative stress and PKD l and NF-kB protein expressions in rats with severe acute pancreatitis1[J]. Acta Cir Bras, 2018, 33(7):556-564.
doi: 10.1590/s0102-865020180070000001 URL |
[29] |
Nam JS, Cho MH, Lee GT, et al. The activation of NF-kappa B and AP-1 in peripheral blood mononuclear cells isolated from patients with diabetic nephropathy[J]. Diabetes Res Clin Pract, 2008, 81(1):25-32.
doi: 10.1016/j.diabres.2008.01.032 URL |
[30] | Yang B, Hodgkinson A, Oates PJ, et al. High glucose induction of DNA-binding activity of the transcription factor NF kappa B in patients with diabetic nephropathy[J]. Biochim Biophys Acta, 2008, 782(5):295-302. |
[31] |
Qiao YC, Chen YL, Pan YH, et al. Changes of transforming growth factor beta 1 in patients with type 2 diabetes and diabetic nephropathy: A PRISMA-compliant systematic review and meta-analysis[J]. Medicine (Baltimore), 2017, 96(15):e6583.
doi: 10.1097/MD.0000000000006583 URL |
[32] |
Chang AS, Hathaway CK, Smithies O, et al. Transforming growth factor-β1 and diabetic nephropathy[J]. Am J Physiol Renal Physiol, 2016, 310(8):F689-F696.
doi: 10.1152/ajprenal.00502.2015 URL |
[33] |
Sureshbabu A, Muhsin SA, Choi ME. TGF-β signaling in the kidney: Profibrotic and protective effects[J]. Am J Physiol Renal Physiol, 2016, 310(7):F596-F606.
doi: 10.1152/ajprenal.00365.2015 URL |
[34] | Cooper ME, Vranes D, Youssef S, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes[J]. Diabetes, 1999, 8(11):2229-2239. |
[35] | Nakagawa T, Sato W, Kosugi T, et al. Uncoupling of VEGF with endothelial NO as a potential mechanism for abnormal angiogenesis in the diabetic nephropathy[J]. J Diabetes Res, 2013, 2013:184539. |
[36] |
Cao W, Li J, Yang K, et al. An overview of autophagy: mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108(3):304-322.
doi: 10.1016/j.bulcan.2020.11.004 pmid: 33423775 |
[37] |
Xu L, Fan Q, Wang X, et al. Ursolic acid improves podocyte injury caused by high glucose[J]. Nephrol Dial Transplant, 2017, 32(8):1285-1293.
doi: 10.1093/ndt/gfv382 URL |
[38] | Liu WJ, Huang WF, Ye L, et al. The activity and role of autophagy in the pathogenesis of diabetic nephropathy[J]. Eur Rev Med Pharmacol Sci, 2018, 22(10):3182-3189. |
[39] |
Wei MM, Liu CH, Zhang XC, et al. Autophagy is involved in regulating VEGF during high-glucose-induced podocyte injury[J]. Mol Biosyst, 2016, 12(7):2202-2212.
doi: 10.1039/c6mb00195e pmid: 27138352 |
[40] |
Wang X, Xu X, Xia Y. Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus[J]. Antonie Van Leeuwenhoek, 2017, 110(3):445-453.
doi: 10.1007/s10482-016-0805-3 URL |
[41] |
Ju M, Liu Y, Li M, et al. Baicalin improves intestinal microecology and abnormal metabolism induced by high-fat diet[J]. Eur J Pharmacol, 2019, 857:172457.
doi: 10.1016/j.ejphar.2019.172457 URL |
[42] |
Hänninen A, Toivonen R, Pöysti S, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice[J]. Gut, 2018, 67(8):1445-1453.
doi: 10.1136/gutjnl-2017-314508 pmid: 29269438 |
[43] |
He C, Shan Y, Song W. Targeting gut microbiota as a possible therapy for diabetes[J]. Nutr Res, 2015, 35(5):361-367.
doi: 10.1016/j.nutres.2015.03.002 pmid: 25818484 |
[44] |
Jia ZY, Bai ZZ, Jiang LE, et al. Ocular pharmacokinetic study on baicalin in lens of rabbits following intragastric administration[J]. Graefes Arch Clin Exp Ophthalmol, 2010, 248(1):59-63.
doi: 10.1007/s00417-009-1206-3 URL |
[45] |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22):2402-2410.
doi: 10.1001/jama.2016.17216 pmid: 27898976 |
[46] |
Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis[J]. J Biochem Mol Biol, 2006, 39(5):469-478.
doi: 10.5483/bmbrep.2006.39.5.469 pmid: 17002866 |
[47] | Abcouwer SF. Angiogenic factors and cytokines in diabetic retinopathy[J]. J Clin Cell Immunol, 2013, 11:1-12. |
[48] |
Zhang X, Bao S, Lai D, et al. Intravitreal triamcinolone acetonide inhibits breakdown of the blood-retinal barrier through differential regulation of VEGF-A and its receptors in early diabetic rat retinas[J]. Diabetes, 2008, 57(4):1026-1033.
doi: 10.2337/db07-0982 pmid: 18174522 |
[49] | Witmer AN, Blaauwgeers HG, Weich HA, et al. Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey[J]. Invest Ophthalmol Vis Sci, 2002, 43(3):849-857. |
[50] |
Jo H, Jung SH, Yim HB, et al. The effect of baicalin in a mouse model of retinopathy of prematurity[J]. BMB Rep, 2015, 48(5):271-276.
pmid: 25154719 |
[51] |
Deng YF, Aluko RE, Jin Q, et al. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme[J]. Pharm Biol, 2012, 50(4):401-406.
doi: 10.3109/13880209.2011.608076 pmid: 22136493 |
[52] |
Ola MS, Alhomida AS, Ferrario CM, et al. Role of tissue renin-angiotensin system and the chymase/angiotensin-( 1-12) axis in the pathogenesis of diabetic retinopathy[J]. Curr Med Chem, 2017, 24(28):3104-3114.
doi: 10.2174/0929867324666170407141955 pmid: 28403787 |
[53] |
Sarlos S, Rizkalla B, Moravski CJ, et al. Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin[J]. Am J Pathol, 2003, 163(3):879-887.
pmid: 12937129 |
[54] |
Behl T, Kaur I, Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy[J]. Surv Ophthalmol, 2016, 61(2):187-196.
doi: 10.1016/j.survophthal.2015.06.001 pmid: 26074354 |
[55] |
Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB J, 2004, 18(12):1450-1452.
doi: 10.1096/fj.03-1476fje pmid: 15231732 |
[56] | Ye EA, Steinle JJ. MiR-146a attenuates inflammatory pathways mediated by TLR4/NF-κB and TNFα to protect primary human retinal microvascular endothelial cells grown in high glucose[J]. Mediators Inflamm, 2016, 2016:3958453. |
[57] |
Hui Y, Yin Y. MicroRNA-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating TLR4/NF-κB signaling[J]. Life Sci, 2018, 207:212-218.
doi: S0024-3205(18)30346-1 pmid: 29883722 |
[58] |
Dai C, Jiang S, Chu C, et al. Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microRNA-145[J]. Exp Mol Pathol, 2019, 106:123-130.
doi: S0014-4800(18)30345-9 pmid: 30625293 |
[59] |
Wrighten SA, Piroli GG, Grillo CA, et al. A look inside the diabetic brain: contributors to diabetes-induced brain aging[J]. Biochim Biophys Acta, 2009, 1792(5):444-453.
doi: 10.1016/j.bbadis.2008.10.013 pmid: 19022375 |
[60] |
Kwon KJ, Lee EJ, Kim MK, et al. Diabetes augments cognitive dysfunction in chronic cerebral hypoperfusion by increasing neuronal cell death: Implication of cilostazol for diabetes mellitus-induced dementia[J]. Neurobiol Dis, 2015, 73:12-23.
doi: 10.1016/j.nbd.2014.08.034 pmid: 25281785 |
[61] |
Zhang L, Xing D, Wang W, et al. Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of scutellariae radix extract[J]. J Ethnopharmacol, 2006, 103(1):120-125.
pmid: 16159703 |
[62] |
Ma P, Mao XY, Li XL, et al. Baicalin alleviates diabetesassociated cognitive deficits via modulation of mitogen-activated protein kinase signaling, brainderived neurotrophic factor and apoptosis[J]. Mol Med Rep, 2015, 12(4):6377-6383.
doi: 10.3892/mmr.2015.4219 URL |
[63] |
Adams JP, Sweatt JD. Molecular psychology: roles for the ERK MAP kinase cascade in memory[J]. Annu Rev Pharmacol Toxicol, 2002, 42:135-163.
pmid: 11807168 |
[64] |
Liu J, Feng L, Ma D, et al. Neuroprotective effect of paeonol on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat[J]. Neurosci Lett, 2013, 549:63-68.
doi: 10.1016/j.neulet.2013.06.002 pmid: 23791853 |
[65] |
Forlenza OV, Diniz BS, Teixeira AL, et al. Effect of brain-derived neurotrophic factor val66Met polymorphism and serum levels on the progression of mild cognitive impairment[J]. World J Biol Psychiatry, 2010, 11(6):774-780.
doi: 10.3109/15622971003797241 pmid: 20491609 |
[66] |
Murray SR, Reynolds RM. Short-and long-term outcomes of gestational diabetes and its treatment on fetal development[J]. Prenat Diagn, 2020, 40(9):1085-1091.
doi: 10.1002/pd.v40.9 URL |
[67] | 张涛, 田林红, 王春玲, 等. 黄芩苷对糖尿病大鼠心肌细胞凋亡的影响[J]. 实用医学杂志, 2010, 26(13):2289-2291. |
[1] | 琚盼雨, 杨富琦, 周兴建. 2型糖尿病患者TyG指数与甲状腺结节的关联性[J]. 临床荟萃, 2025, 40(4): 329-333. |
[2] | 曾坚, 王小敏, 方木通, 卢水华. 《世界卫生组织结核病操作手册模块6:结核病及其共患病》(第3版)解读[J]. 临床荟萃, 2025, 40(3): 270-274. |
[3] | 胡松林, 邸雅, 刘灿章, 闫杰. 应用虚拟组织学血管内超声探讨血小板/淋巴细胞比值水平与冠心病合并2型糖尿病患者冠状动脉斑块特点的关系[J]. 临床荟萃, 2025, 40(2): 117-121. |
[4] | 史双伟, 饶小娟, 解丽然, 方一凡, 王姗姗. 甲状腺功能正常的2型糖尿病患者甲状腺激素敏感性与非酒精性脂肪肝的相关性[J]. 临床荟萃, 2025, 40(2): 133-137. |
[5] | 刘亚楠, 徐建杭, 詹明. 糖尿病肾脏疾病患者睡眠障碍和疼痛的研究进展[J]. 临床荟萃, 2025, 40(1): 76-81. |
[6] | 高胜男, 张冉冉, 张羽曦, 高宁, 冯冰, 刘国强. 我国糖尿病神经病理性疼痛疾病负担及药物治疗进展[J]. 临床荟萃, 2024, 39(9): 842-846. |
[7] | 马剑楠, 陶杰, 桑大森, 吴寿岭, 张旗. 尿转铁蛋白与2型糖尿病人群新发心血管疾病的关系[J]. 临床荟萃, 2024, 39(8): 700-705. |
[8] | 熊璐, 郭莲. 2型糖尿病患者25(OH)D和SUA/SCr与合并非酒精性脂肪肝的相关性[J]. 临床荟萃, 2024, 39(8): 706-711. |
[9] | 张孟辉, 王新颖, 王树松, 帖彦清. 锌稳态在糖尿病及并发症中的作用[J]. 临床荟萃, 2024, 39(8): 758-762. |
[10] | 岳江红, 王恒, 蔡钢, 张选明, 彭曦. 索格列净治疗2型糖尿病疗效和安全性的meta分析[J]. 临床荟萃, 2024, 39(7): 581-592. |
[11] | 延天美, 吴亚楠, 刘月影, 魏立民. 甘油三酯葡萄糖指数联合肥胖指标与糖尿病视网膜病变的相关性[J]. 临床荟萃, 2024, 39(7): 612-619. |
[12] | 杜斯娜, 李伟, 林雅静, 孙建国, 毛毛, 陈坚伟, 孙丹波, 毛玉山. 2型糖尿病胰岛素泵强化治疗后胰岛素剂量谱的分析及应用[J]. 临床荟萃, 2024, 39(7): 620-624. |
[13] | 高姊璇, 刘建凤. 成人糖尿病分型及应用研究进展[J]. 临床荟萃, 2024, 39(7): 650-653. |
[14] | 王翔, 林仿, 励丽, 孙杰辉. 血清血管生成素样蛋白2与2型糖尿病性视网膜病变的关系[J]. 临床荟萃, 2024, 39(6): 501-505. |
[15] | 孙辉, 刘海英, 任俊豪, 李锦霞. 欧洲人群体质指数与2型糖尿病因果关系的双向孟德尔随机化研究[J]. 临床荟萃, 2024, 39(4): 325-331. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||