临床荟萃 ›› 2025, Vol. 40 ›› Issue (3): 275-280.doi: 10.3969/j.issn.1004-583X.2025.03.015
收稿日期:
2024-12-30
出版日期:
2025-03-20
发布日期:
2025-03-25
通讯作者:
陶嘉楠
E-mail:1472669114@qq.com
基金资助:
Received:
2024-12-30
Online:
2025-03-20
Published:
2025-03-25
摘要:
肺动脉高压(pulmonary hypertension,PH)是一种以显著的肺血管重构和进行性肺血管负荷增加,最终导致右心室肥大和重塑的综合征,其发病机制尚未完全明确,但越来越多的证据表明,肺动脉高压(pulmonary hypertension,PH)不再是单纯的呼吸或循环系统疾病,肠道微生物菌群也在其中起着重要作用。随着肠道微生物及其代谢物短链脂肪酸(short chain fatty acids,SCFAs)对PH作用研究的深入,所谓“肠-脑轴(gut-brain axis)”正在被逐渐揭示,故认为肠道微生物菌群可以通过调节免疫应答来影响PH的发生和发展。本文从肺动脉内皮细胞、平滑肌细胞及成纤维细胞3个方面就SCFAs对PH的作用做一综述,旨在为后期有关肠道微生物和PH的相关性研究提供一些依据。
中图分类号:
任怀静, 陶嘉楠, 王学红, 安琪. 肠道微生物代谢物SCFAs对肺动脉高压作用的研究进展[J]. 临床荟萃, 2025, 40(3): 275-280.
细胞类型 | SCFAs受体/靶点分布 | SCFAs主要作用 | 主要参考文献 |
---|---|---|---|
PAECs | GPR41/43?HDAC | 抗炎作用;降低血管内皮细胞通透性;减轻氧化应激;抑制EMT等 | Li等[ |
PASMCs | GPR41/GPR109A?HDAC | 抑制PASMCs的增殖和迁移(通过抑制PI3K-Akt途径);活化eNOS,增加NO含量;加速VSMC钙化等 | Roostalu等[ |
PAFs | HDAC?GPR43? | 抗炎作用;抗纤维化作用;促纤维化和血管生成 | 储国俊[ |
表1 SCFAs对PH主要细胞成分的影响
细胞类型 | SCFAs受体/靶点分布 | SCFAs主要作用 | 主要参考文献 |
---|---|---|---|
PAECs | GPR41/43?HDAC | 抗炎作用;降低血管内皮细胞通透性;减轻氧化应激;抑制EMT等 | Li等[ |
PASMCs | GPR41/GPR109A?HDAC | 抑制PASMCs的增殖和迁移(通过抑制PI3K-Akt途径);活化eNOS,增加NO含量;加速VSMC钙化等 | Roostalu等[ |
PAFs | HDAC?GPR43? | 抗炎作用;抗纤维化作用;促纤维化和血管生成 | 储国俊[ |
[1] | Hassoun PM. Pulmonary arterial hypertension[J]. N Engl J Med, 2021, 385(25):2361-2376. |
[2] | Condon DF, Nickel NP, Anderson R, et al. The 6th world symposium on pulmonary hypertension: What's old is new[J]. F1000Res, 2019,8. |
[3] |
Poch D, Mandel J. Pulmonary hypertension[J]. Ann Intern Med, 2021, 174(4):ITC49-ITC64.
doi: 10.7326/AITC202104200 pmid: 33844574 |
[4] | Leber L, Beaudet A, Muller A. Epidemiology of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: Identification of the most accurate estimates from a systematic literature review[J]. Pulm Circ, 2021, 11(1):765570412. |
[5] | 劳耀贤, 谢锦程, 肖梦媛, 等. 肺动脉高压的药物治疗:从传统到前沿[J/OL]. 中华高血压杂志(中英文),1-9[2025-02-26]. http://kns.cnki.net/kcms/detail/11.5540.R.20240914.0843.002.html. |
[6] |
Kim S, Rigatto K, Gazzana MB, et al. Altered gut microbiome profile in patients with pulmonary arterial hypertension[J]. Hypertension, 2020, 75(4):1063-1071.
doi: 10.1161/HYPERTENSIONAHA.119.14294 pmid: 32088998 |
[7] | Moutsoglou DM, Tatah J, Prisco SZ, et al. Pulmonary arterial hypertension patients have a proinflammatory gut microbiome and altered circulating microbial metabolites[J]. Am J Respir Crit Care Med, 2023, 207(6):740-756. |
[8] | Karoor V, Strassheim D, Sullivan T, et al. The short-chain fatty acid butyrate attenuates pulmonary vascular remodeling and inflammation in hypoxia-Induced pulmonary hypertension[J]. Int J Mol Sci, 2021, 22(18): 9916. |
[9] | Beam A, Clinger E, Hao L. Effect of diet and dietary components on the composition of the gut microbiota[J]. Nutrients, 2021, 13(8): 2795. |
[10] |
Backhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life[J]. Cell Host Microbe, 2015, 17(5):690-703.
doi: 10.1016/j.chom.2015.04.004 pmid: 25974306 |
[11] | Huang L, Zhang H, Liu Y, et al. The role of gut and airway microbiota in pulmonary arterial hypertension[J]. Front Microbiol, 2022, 13:929752. |
[12] | Almeida A, Mitchell AL, Boland M, et al. A new genomic blueprint of the human gut microbiota[J]. Nature, 2019, 568(7753):499-504. |
[13] | Liu BN, Liu XT, Liang ZH, et al. Gut microbiota in obesity[J]. World J Gastroenterol, 2021, 27(25):3837-3850. |
[14] | Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of type-2 diabetes[J]. Nutrients, 2021, 14(1): 166. |
[15] | Tsai HJ, Tsai WC, Hung WC, et al. Gut microbiota and subclinical cardiovascular disease in patients with type 2 diabetes mellitus[J]. Nutrients, 2021, 13(8):2679. |
[16] | Sepich-Poore GD, Zitvogel L, Straussman R, et al. The microbiome and human cancer[J]. Science, 2021, 371(6536): eabc4552. |
[17] | Cao C, Yue S, Lu A, et al. Host-gut microbiota metabolic interactions and their role in precision diagnosis and treatment of gastrointestinal cancers[J]. Pharmacol Res, 2024, 207:107321. |
[18] | Hays KE, Pfaffinger JM, Ryznar R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease[J]. Gut Microbes, 2024, 16(1):2393270. |
[19] | Facchin S, Bertin L, Bonazzi E, et al. Short-chain fatty acids and human health: From metabolic pathways to current therapeutic implications[J]. Life (Basel), 2024, 14(5):559. |
[20] | Perler BK, Friedman ES, Wu GD. The role of the gut microbiota in the relationship between diet and human health[J]. Annu Rev Physiol, 2023, 85:449-468. |
[21] | Liu P, Wang Y, Yang G, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis[J]. Pharmacol Res, 2021, 165:105420. |
[22] | AI MS, Malik SS, AI IM, et al. Free fatty acid receptors (FFARs) in adipose: Physiological role and therapeutic outlook[J]. Cells, 2022, 11(4):750. |
[23] | Zhang L, Liu C, Jiang Q, et al. Butyrate in energy metabolism: There is still more to learn[J]. Trends Endocrinol Metab, 2021, 32(3):159-169. |
[24] |
Tan JK, Macia L, Mackay CR. Dietary fiber and SCFAs in the regulation of mucosal immunity[J]. J Allergy Clin Immunol, 2023, 151(2):361-370.
doi: 10.1016/j.jaci.2022.11.007 pmid: 36543697 |
[25] | 常开丽, 张灿, 卢祥婷, 等. 肠道菌群及其代谢物与肺动脉高压相关性的研究进展[J]. 重庆医科大学学报, 2024, 49(10):1039-1044. |
[26] | Hu Y, Chi L, Kuebler WM, et al. Perivascular inflammation in pulmonary arterial hypertension[J]. Cells, 2020, 9(11):2338. |
[27] | Kong C, Chen X. Combined photodynamic and photothermal therapy and immunotherapy for cancer treatment: A review[J]. Int J Nanomedicine, 2022, 17:6427-6446. |
[28] | Safaie QE, Stewart DJ. Cellular senescence in the pathogenesis of pulmonary arterial hypertension: The good, the bad and the uncertain[J]. Front Immunol, 2024, 15:1403669. |
[29] | Li M, van Esch B, Wagenaar G, et al. Pro-and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells[J]. Eur J Pharmacol, 2018, 831:52-59. |
[30] |
Robles-Vera I, Toral M, de la Visitacion N, et al. Protective effects of short-chain fatty acids on endothelial dysfunction induced by angiotensin Ⅱ[J]. Front Physiol, 2020, 11:277.
doi: 10.3389/fphys.2020.00277 pmid: 32372967 |
[31] | Li M, van Esch B, Henricks P, et al. Time and concentration dependent effects of short chain fatty acids on lipopolysaccharide-or tumor necrosis factor alpha-induced endothelial activation[J]. Front Pharmacol, 2018, 9:233. |
[32] | Chelladurai P, Boucherat O, Stenmark K, et al. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy[J]. Br J Pharmacol, 2021, 178(1):54-71. |
[33] | Jiang Y, Song S, Liu J, et al. Epigenetic regulation of programmed cell death in hypoxia-induced pulmonary arterial hypertension[J]. Front Immunol, 2023, 14:1206452. |
[34] | Chen F, Li X, Aquadro E, et al. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension[J]. Free Radic Biol Med, 2016, 99:167-178. |
[35] | Lecce L, Xu Y, V'Gangula B, et al. Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype[J]. J Clin Invest, 2021, 131(15): e131178. |
[36] | Lechartier B, Berrebeh N, Huertas A, et al. Phenotypic diversity of vascular smooth muscle cells in pulmonary arterial hypertension: implications for therapy[J]. Chest, 2022, 161(1):219-231. |
[37] | Donadon M, Santoro MM. The origin and mechanisms of smooth muscle cell development in vertebrates[J]. Development, 2021, 148(7):dev197384. |
[38] |
Roostalu U, Aldeiri B, Albertini A, et al. Distinct cellular mechanisms underlie smooth muscle turnover in vascular development and repair[J]. Circ Res, 2018, 122(2):267-281.
doi: 10.1161/CIRCRESAHA.117.312111 pmid: 29167274 |
[39] |
Gao Y, Yao Q, Meng L, et al. Double-side role of short chain fatty acids on host health via the gut-organ axes[J]. Anim Nutr, 2024, 18:322-339.
doi: 10.1016/j.aninu.2024.05.001 pmid: 39290857 |
[40] |
Tan X, Feng L, Huang X, et al. Histone deacetylase inhibitors promote eNOS expression in vascular smooth muscle cells and suppress hypoxia-induced cell growth[J]. J Cell Mol Med, 2017, 21(9):2022-2035.
doi: 10.1111/jcmm.13122 pmid: 28266122 |
[41] | Zhong H, Yu H, Chen J, et al. The short-chain fatty acid butyrate accelerates vascular calcification via regulation of histone deacetylases and NF-kappaB signaling[J]. Vascul Pharmacol, 2022, 146:107096. |
[42] | Mizuta K, Sasaki H, Zhang Y, et al. The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(6):L1248-L1260. |
[43] | 王淑美, 刘雅欣, 赵一桐, 等. 高同型半胱氨酸血症对心血管病进程的加速作用[J]. 生理科学进展, 2024, 55(3):248-256. |
[44] | Ye Y, Xu Q, Wuren T. Inflammation and immunity in the pathogenesis of hypoxic pulmonary hypertension[J]. Front Immunol, 2023, 14:1162556. |
[45] | Cussac LA, Cardouat G, Tiruchellvam PN, et al. TRPV4 channel mediates adventitial fibroblast activation and adventitial remodeling in pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(1):L135-L146. |
[46] | 储国俊. MicroRNA-26a-5p通过抑制自噬减轻肺血管重构的机制研究[D]. 上海: 中国人民解放军海军军医大学, 2023. |
[47] | Castro PR, Bittencourt L, Larochelle S, et al. GPR43 regulates sodium butyrate-induced angiogenesis and matrix remodeling[J]. Am J Physiol Heart Circ Physiol, 2021, 320(3):H1066-H1079. |
[48] | Oliveira AC, Yang T, Li J, et al. Fecal matter transplant from Ace2 overexpressing mice counteracts chronic hypoxia-induced pulmonary hypertension[J]. Pulm Circ, 2022, 12(1):e12015. |
[49] | Moutsoglou DM. 2021 American thoracic society BEAR cage winning proposal: Microbiome transplant in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2022, 205(1):13-16. |
[1] | 延天美, 吴亚楠, 梁鹏, 魏立民. 粪便微生物移植:肥胖患者减重的新方案[J]. 临床荟萃, 2024, 39(5): 455-459. |
[2] | 匡竞, 滕双芩, 申彤彤, 闫怡然, 申川, 王玮, 王亚东, 赵彩彦. 门脉性肺动脉高压研究进展[J]. 临床荟萃, 2024, 39(4): 352-356. |
[3] | 王淑亮, 苏永峰. 肠道菌群在2型糖尿病中的研究进展[J]. 临床荟萃, 2024, 39(3): 274-278. |
[4] | 王沁濡, 尹琴, 李娟, 甘洪玉. 中医药治疗慢性阻塞性肺疾病合并肺动脉高压的研究进展[J]. 临床荟萃, 2024, 39(2): 188-192. |
[5] | 张晓璐, 李红山. 自身免疫性肝炎发病机制研究进展——聚焦“肠道菌群与免疫系统相互作用”[J]. 临床荟萃, 2024, 39(2): 177-182. |
[6] | 王鑫, 张展, 刘铎, 谢萍. 铁缺乏与肺动脉高压相关性的研究进展[J]. 临床荟萃, 2023, 38(9): 838-844. |
[7] | 杨小雄, 杨帆, 魏小果. 肠-微生物群-肝轴与代谢相关脂肪性肝病的研究进展[J]. 临床荟萃, 2023, 38(6): 559-563. |
[8] | 王晶霞, 汤灵玲. 肠道微生物群疗法防治复发性艰难梭菌感染研究进展[J]. 临床荟萃, 2022, 37(8): 759-763. |
[9] | 杜菲, 李英. 老年糖尿病肾病患者肠道菌群失调的研究进展[J]. 临床荟萃, 2022, 37(2): 178-181. |
[10] | 杨燕, 王德峰. 肠道菌群在糖尿病治疗中的研究进展[J]. 临床荟萃, 2022, 37(10): 953-956. |
[11] | 安勤燕, 姜蓉, 康彬, 杜明, 周仁明, 赵洪娟, 段炜, 卢飞, 刘锦铭. 特发性肺动脉高压患者RDW、NT-ProBNP、BigET-1、HMGB1水平变化及临床意义[J]. 临床荟萃, 2021, 36(11): 1001-1004. |
[12] | 闫新望,刘瑞娟. 微生物群在癌症发展及治疗中的进展[J]. 临床荟萃, 2019, 34(8): 764-768. |
[13] | 郭蕊1, 韦祁山2,李雯彬3,朱慧1,于国伟1. 短链脂肪酸通过肠脑轴改善肥胖的研究进展[J]. 临床荟萃, 2019, 34(12): 1148-1152. |
[14] | 孙明文1,何凤珍2,岳红梅1. 呼出气一氧化氮在非哮喘肺部疾病应用进展[J]. 临床荟萃, 2017, 32(9): 816-818. |
[15] | 袁雅冬;宫小薇. 2013年呼吸病学新进展[J]. 临床荟萃, 2014, 29(3): 275-281. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||