[1] |
Martínez-Vargas IU, Sánchez-Bello ME, Miguel-Rodríguez CE, et al. Myo1f has an essential role in gamma delta T intraepithelial lymphocyte adhesion and migration[J]. Front Immunol, 2023, 14:1041079.
|
[2] |
Girard A, Vimonpatranon S, Chan A, et al. MAdCAM-1 co-stimulation combined with retinoic acid and TGF-β induces blood CD8+ T cells to adopt a gut CD101+ TRM phenotype[J]. Mucosal Immunol, 2024, 17(4):700-712.
|
[3] |
Gordon H, Wichmann K, Lewis A, et al. Human intestinal dendritic cells can overcome retinoic acid signaling to generate proinflammatory CD4 T cells with both gut and skin homing properties[J]. J Immunol, 2024, 212(1):96-106.
|
[4] |
Chen KY, De Giovanni M, Xu Y, et al. Inflammation switches the chemoattractant requirements for naive lymphocyte entry into lymph nodes[J]. Cell, 2024, 17:S0092-8674(24)01347-3.
|
[5] |
Kitsou K, Kokkotis G, Rivera-Nieves J, et al. Targeting the sphingosine-1-phosphate pathway: New opportunities in inflammatory bowel disease management[J]. Drugs, 2024, 84(10):1179-1197.
doi: 10.1007/s40265-024-02094-5
pmid: 39322927
|
[6] |
Danielson SM, Lefferts AR, Norman E, et al. Myeloid cells and sphingosine-1-phosphate are required for TCRαβ intraepithelial lymphocyte recruitment to the colon epithelium[J]. J Immunol, 2024, 212(11):1843-1854.
doi: 10.4049/jimmunol.2200556
pmid: 38568091
|
[7] |
Li JK, Veeraperumal S, Aweya JJ, et al. Fucoidan modulates gut microbiota and immunity in Peyer's patches against inflammatory bowel disease[J]. Carbohydr Polym, 2024, 342:122421.
|
[8] |
Zhang S, Li G, Qian K, et al. Exosomes derived from cancer cells relieve inflammatory bowel disease in mice[J]. J Drug Target, 2024, 32(9):1073-1085.
doi: 10.1080/1061186X.2024.2369876
pmid: 38958251
|
[9] |
Hidalgo-García L, Ruiz-Malagon AJ, Huertas F, et al. Administration of intestinal mesenchymal stromal cells reduces colitis-associated cancer in C57BL/6J mice modulating the immune response and gut dysbiosis[J]. Pharmacol Res, 2023, 195:106891.
|
[10] |
Bressler B, Yarur A, Silverberg MS, et al. Vedolizumab and anti-tumour necrosis factor α real-world outcomes in biologic-naïve inflammatory bowel disease patients: Results from the EVOLVE study[J]. J Crohns Colitis, 2021, 15(10):1694-1706.
doi: 10.1093/ecco-jcc/jjab058
pmid: 33786600
|
[11] |
Visuri I, Eriksson C, Karlqvist S, et al. Long-term outcomes of vedolizumab in inflammatory bowel disease: The Swedish prospective multicentre SVEAH extension study[J]. Therap Adv Gastroenterol, 2023, 30:16:17562848231174953.
|
[12] |
Lin WC, Tai WC, Chang CH, et al. Real-world evidence of effectiveness and safety of vedolizumab for inflammatory bowel disease in Taiwan: A prospective nationwide registry (VIOLET) study[J]. Inflamm Bowel Dis, 2023, 29(11):1730-1740.
|
[13] |
Yan J, Ding X, Wu J, et al. Real-life effectiveness and safety of vedolizumab in moderate-to-severe ulcerative colitis: A single-center experience in Northern China[J]. Medicine (Baltimore), 2024, 103(27):e38759.
|
[14] |
Bokemeyer B, Plachta-Danielzik S, di Giuseppe R, et al. Real-world effectiveness of vedolizumab vs anti-TNF in biologic-naive crohn's disease patients: A 2-year propensity-score-adjusted analysis from the VEDOIBD-study[J]. Inflamm Bowel Dis, 2024, 30(5):746-756.
|
[15] |
Sommer K, Heidbreder K, Kreiss L, et al. Anti-β7 integrin treatment impedes the recruitment on non-classical monocytes to the gut and delays macrophage-mediated intestinal wound healing[J]. Clin Transl Med, 2023, 13(4):e1233.
doi: 10.1002/ctm2.1233
pmid: 37029786
|
[16] |
Wiendl M, Dedden M, Liu LJ, et al. Etrolizumab-s fails to control E-cadherin-dependent co-stimulation of highly activated cytotoxic T cells[J]. Nat Commun, 2024, 15(1):1043.
doi: 10.1038/s41467-024-45352-6
pmid: 38310086
|
[17] |
Sandborn WJ, Panés J, Danese S, et al. Etrolizumab as induction and maintenance therapy in patients with moderately to severely active Crohn's disease (BERGAMOT): A randomised, placebo-controlled, double-blind, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2023, 8(1):43-55.
|
[18] |
Zhang R, Jia Z, Piao Y. Meta-analysis of etrolizumab versus placebo in ulcerative colitis: Safety and efficacy outcomes[J]. Therap Adv Gastroenterol, 2024, 17:17562848241253685.
|
[19] |
Ben-Horin S, Novack L, Mao R, et al. Efficacy of biologic drugs in short-duration versus long-duration inflammatory bowel disease: A systematic review and an individual-patient data meta-analysis of randomized controlled trials[J]. Gastroenterology, 2022, 162(2):482-494.
|
[20] |
Rindi LV, Zaçe D, Braccialarghe N, et al. Drug-induced progressive multifocal leukoencephalopathy (PML): A systematic review and meta-analysis[J]. Drug Saf, 2024, 47(4):333-354.
|
[21] |
Datta N, Johnson C, Kao D, et al. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis[J]. Pharmacol Res, 2023, 194:106870.
|
[22] |
Schulze LL, Becker E, Dedden M, et al. Differential effects of ontamalimab versus vedolizumab on immune cell trafficking in intestinal inflammation and inflammatory bowel disease[J]. J Crohns Colitis, 2023, 17(11):1817-1832.
doi: 10.1093/ecco-jcc/jjad088
pmid: 37208197
|
[23] |
Vermeire S, Danese S, Sandborn WJ, et al. Efficacy and safety of the anti-mucosal addressin cell adhesion molecule-1 antibody ontamalimab in patients with moderate-to-severe ulcerative colitis or Crohn's disease[J]. J Crohns Colitis, 2024, 18(5):708-719.
|
[24] |
Huber ME, Toy L, Schmidt MF, et al. A chemical biology toolbox targeting the intracellular binding site of CCR9: Fluorescent ligands, new drug leads and PROTACs[J]. Angew Chem Int Ed Engl, 2022, 61(12):e202116782.
|
[25] |
Armuzzi A, Cross RK, Lichtenstein GR, et al. Cardiovascular safety of ozanimod in patients with ulcerative colitis: True north and open-label extension analyses[J]. Clin Gastroenterol Hepatol, 2024, 22(5):1067-1076.
|
[26] |
Danese S, Panaccione R, Abreu MT, et al. Efficacy and safety of approximately 3 years of continuous ozanimod in moderately to severely active ulcerative colitis: Interim analysis of the true north open-label extension[J]. J Crohns Colitis, 2024, 18(2):264-274.
|
[27] |
Vermeire S, Sands BE, Peyrin-Biroulet L, et al. Impact of prior biologic or janus kinase inhibitor therapy on efficacy and safety of etrasimod in the ELEVATE UC 52 and ELEVATE UC 12 trials[J]. J Crohns Colitis, 2024, 18(11):1780-1794.
|
[28] |
Sandborn WJ, Vermeire S, Peyrin-Biroulet L, et al. Etrasimod as induction and maintenance therapy for ulcerative colitis (ELEVATE): Two randomised, double-blind, placebo-controlled, phase 3 studies[J]. Lancet, 2023, 401(10383):1159-1171.
doi: 10.1016/S0140-6736(23)00061-2
pmid: 36871574
|
[29] |
D’Haens G, Dubinsky MC, Peyrin-Biroulet L, et al. Etrasimod induction therapy in moderately to severely active Crohn’s disease: Results from a phase 2, randomised, double-blind substudy[abstract no. P632][J]. J Crohns Colitis, 2023, 17(Suppl_1):i764-765.
|