Clinical Focus ›› 2024, Vol. 39 ›› Issue (12): 1125-1130.doi: 10.3969/j.issn.1004-583X.2024.12.012
Previous Articles Next Articles
Received:
2024-07-07
Online:
2024-12-20
Published:
2025-01-10
CLC Number:
[1] | Xue C, Yao Q, Gu X, et al. Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer[J]. Signal Transduct Target Ther, 2023, 8(1):204. |
[2] | Roskoski RJ. Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders[J]. Pharmacol Res, 2022, 183:106362. |
[3] | Hu Q, Bian Q, Rong D, et al. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens[J]. Front Bioeng Biotechnol, 2023, 11:1110765. |
[4] |
Núñez P, Quera R, Yarur AJ. Safety of Janus kinase inhibitors in inflammatory bowel diseases[J]. Drugs, 2023, 83(4):299-314.
doi: 10.1007/s40265-023-01840-5 pmid: 36913180 |
[5] | Assal A, Mapara MY. Janus kinase inhibitors and cell therapy[J]. Front Immunol, 2021, 12:740847. |
[6] |
Henry SP, Jorgensen WL. Progress on the pharmacological targeting of Janus pseudokinases[J]. J Med Chem, 2023, 66(16):10959-10990.
doi: 10.1021/acs.jmedchem.3c00926 pmid: 37578217 |
[7] | Yang X, Yan H, Jiang N, et al. IL-6 trans-signaling drives a STAT3-dependent pathway that leads to structural alterations of the peritoneal membrane[J]. Am J Physiol Renal Physiol, 2020, 318(2):F338-F353. |
[8] | Hu X, Li J, Fu M, et al. The JAK/STAT signaling pathway: From bench to clinic[J]. Signal Transduct Target Ther, 2021, 6(1):402. |
[9] | Chen H, Bian A, Zhou W, et al. Discovery of the highly selective and potent STAT3 inhibitor for pancreatic cancer treatment[J]. ACS Cent Sci, 2024, 10(3):579-594. |
[10] | Li YJ, Zhang C, Martincuks A, et al. STAT proteins in cancer: Orchestration of metabolism[J]. Nat Rev Cancer, 2023, 23(3):115-134. |
[11] |
Du W, Liu N, Zhang Y, et al. PLOD2 promotes aerobic glycolysis and cell progression in colorectal cancer by upregulating HK2[J]. Biochem Cell Biol, 2020, 98(3):386-395.
doi: 10.1139/bcb-2019-0256 pmid: 31742425 |
[12] | Guo X, Jiang C, Chen Z, et al. Regulation of the JAK/STAT signaling pathway in spinal cord injury: An updated review[J]. Front Immunol, 2023, 14:1276445. |
[13] |
Liang D, Wang Q, Zhang W, et al. JAK/STAT in leukemia: A clinical update[J]. Mol Cancer, 2024, 23(1):25.
doi: 10.1186/s12943-023-01929-1 pmid: 38273387 |
[14] |
Goetsch A, D'Amico F, Allocca M, et al. Advances in pharmacotherapy for ulcerative colitis: A focus on JAK1 inhibitors[J]. Expert Opin Pharmacother, 2023, 24(7):849-861.
doi: 10.1080/14656566.2023.2200931 pmid: 37038911 |
[15] |
Luo Y, Alexander M, Gadina M, et al. JAK-STAT signaling in human disease: From genetic syndromes to clinical inhibition[J]. J Allergy Clin Immunol, 2021, 148(4):911-925.
doi: 10.1016/j.jaci.2021.08.004 pmid: 34625141 |
[16] |
Muller R. JAK inhibitors in 2019, synthetic review in 10 points[J]. Eur J Intern Med, 2019, 66:9-17.
doi: S0953-6205(19)30182-7 pmid: 31178258 |
[17] |
Glassman CR, Tsutsumi N, Saxton RA, et al. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation[J]. Science, 2022, 376(6589):163-169.
doi: 10.1126/science.abn8933 pmid: 35271300 |
[18] | Gilardi D, Gabbiadini R, Allocca M, et al. PK, PD, and interactions: The new scenario with JAK inhibitors and S1P receptor modulators, two classes of small molecule drugs, in IBD[J]. Expert Rev Gastroenterol Hepatol, 2020, 14(9):797-806. |
[19] |
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology[J]. Cell Mol Immunol, 2023, 20(9):1002-1022.
doi: 10.1038/s41423-023-01036-7 pmid: 37217798 |
[20] | Caiazzo G, Caiazzo A, Napolitano M, et al. The use of JAK/STAT inhibitors in chronic inflammatory disorders[J]. J Clin Med, 2023, 12(8):2865. |
[21] | Qin Z, Wang R, Hou P, et al. TCR signaling induces STAT3 phosphorylation to promote TH17 cell differentiation[J]. J Exp Med, 2024, 221(3):e20230683. |
[22] |
Wang X, Han C, Yang D, et al. STAT3 and SOX-5 induce BRG1-mediated chromatin remodeling of RORCE2 in Th17 cells[J]. Commun Biol, 2024, 7(1):10.
doi: 10.1038/s42003-023-05735-9 pmid: 38172644 |
[23] | Hindmarch DC, Malashanka S, Shows DM, et al. Janus kinase inhibitors differentially inhibit specific cytokine signals in the mesenteric lymph node cells of inflammatory bowel disease patients[J]. J Crohns Colitis, 2024, 18(4):628-637. |
[24] |
Salas A, Hernandez-Rocha C, Duijvestein M, et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(6):323-337.
doi: 10.1038/s41575-020-0273-0 pmid: 32203403 |
[25] | van Gennep S, Fung I, Jong DC, et al. Histological outcomes and JAK-STAT signalling in ulcerative colitis patients treated with Tofacitinib[J]. J Crohns Colitis, 2024, 18(8):1283-1291. |
[26] | Quiniou G, Andromaque L, Duclaux-Loras R, et al. Impaired reprogramming of the autophagy flux in maturing dendritic cells from crohn disease patients with core autophagy gene-related polymorphisms[J]. Autophagy, 2024, 20(8):1837-1853. |
[27] |
Neurath MF. Strategies for targeting cytokines in inflammatory bowel disease[J]. Nat Rev Immunol, 2024, 24(8):559-576.
doi: 10.1038/s41577-024-01008-6 pmid: 38486124 |
[28] |
Lovato P, Brender C, Agnholt J, et al. Constitutive STAT3 activation in intestinal T cells from patients with Crohn's disease[J]. J Biol Chem, 2003, 278(19):16777-16781.
doi: 10.1074/jbc.M207999200 pmid: 12615922 |
[29] | Villanueva A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15):1450-1462. |
[30] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. |
[31] | Park H, Lee S, Lee J, et al. Exploring the JAK/STAT signaling pathway in hepatocellular carcinoma: Unraveling signaling complexity and therapeutic implications[J]. Int J Mol Sci, 2023, 24(18): 13764. |
[32] |
Xiao Y, Li Y, Shi D, et al. MEX3C-mediated decay of SOCS3 mRNA promotes JAK2/STAT3 signaling to facilitate metastasis in hepatocellular carcinoma[J]. Cancer Res, 2022, 82(22):4191-4205.
doi: 10.1158/0008-5472.CAN-22-1203 pmid: 36112698 |
[33] | Lin L, Chen Q. Yadanziolide A inhibits proliferation and induces apoptosis of hepatocellular carcinoma via JAK-STAT pathway: A Preclinical Study[J]. Biology (Basel), 2024, 13(7): 528. |
[34] |
Hashemi M, Sabouni E, Rahmanian P, et al. Deciphering STAT3 signaling potential in hepatocellular carcinoma: Tumorigenesis, treatment resistance, and pharmacological significance[J]. Cell Mol Biol Lett, 2023, 28(1):33.
doi: 10.1186/s11658-023-00438-9 pmid: 37085753 |
[35] |
Zhou Q, Tian W, Jiang Z, et al. A positive feedback loop of AKR1C3-mediated activation of NF-κB and STAT3 facilitates proliferation and metastasis in hepatocellular carcinoma[J]. Cancer Res, 2021, 81(5):1361-1374.
doi: 10.1158/0008-5472.CAN-20-2480 pmid: 33361392 |
[36] |
Li Y, Song Z, Han Q, et al. Targeted inhibition of STAT3 induces immunogenic cell death of hepatocellular carcinoma cells via glycolysis[J]. Mol Oncol, 2022, 16(15):2861-2880.
doi: 10.1002/1878-0261.13263 pmid: 35665592 |
[37] | Ni Y, Low JT, Silke J, et al. Digesting the role of JAK-STAT and cytokine signaling in oral and gastric cancers[J]. Front Immunol, 2022, 13:835997. |
[38] | Yang YL, Liu P, Li D, et al. Stat-3 signaling promotes cell proliferation and metastasis of gastric cancer through PDCD4 downregulation[J]. Kaohsiung J Med Sci, 2020, 36(4):244-249. |
[39] |
Huo C, Gu Y, Wang D, et al. STAT1 suppresses the transcriptional activity of TRIM21 in gastric cancer[J]. J Cancer Res Clin Oncol, 2023, 149(17):15335-15348.
doi: 10.1007/s00432-023-05307-8 pmid: 37639009 |
[40] | Suresh RN, Jung YY, Mohan CD, et al. A new triazolyl-indolo-quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC[J]. Drug Dev Res, 2023, 84(8):1724-1738. |
[41] |
Zhou J, Li T, Chen H, et al. ADAMTS10 inhibits aggressiveness via JAK/STAT/c-MYC pathway and reprograms macrophage to create an anti-malignant microenvironment in gastric cancer[J]. Gastric Cancer, 2022, 25(6):1002-1016.
doi: 10.1007/s10120-022-01319-4 pmid: 35925524 |
[42] | Ghasemian A, Omear HA, Mansoori Y, et al. Long non-coding RNAs and JAK/STAT signaling pathway regulation in colorectal cancer development[J]. Front Genet, 2023, 14:1297093. |
[43] |
Heichler C, Scheibe K, Schmied A, et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis[J]. Gut, 2020, 69(7):1269-1282.
doi: 10.1136/gutjnl-2019-319200 pmid: 31685519 |
[44] |
Liu J, Xing R, Shao J, et al. Relationship between MUC4 variants and metastatic recurrence in colorectal cancer[J]. Int J Gen Med, 2023, 16:5077-5087.
doi: 10.2147/IJGM.S437957 pmid: 37942474 |
[45] |
You AB, Yang H, Lai CP, et al. CMTR1 promotes colorectal cancer cell growth and immune evasion by transcriptionally regulating STAT3[J]. Cell Death Dis, 2023, 14(4):245.
doi: 10.1038/s41419-023-05767-3 pmid: 37024465 |
[46] | Wei XH, Liu YY. Potential applications of JAK inhibitors, clinically approved drugs against autoimmune diseases, in cancer therapy[J]. Front Pharmacol, 2023, 14:1326281. |
[47] | Taylor PC, Choy E, Baraliakos X, et al. Differential properties of Janus kinase inhibitors in the treatment of immune-mediated inflammatory diseases[J]. Rheumatology (Oxford), 2024, 63(2):298-308. |
[48] | Sandborn WJ, Ghosh S, Panes J, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis[J]. N Engl J Med, 2012, 367(7):616-624. |
[49] | Sandborn WJ, D'Haens GR, Sands BE, et al. Tofacitinib for the treatment of ulcerative colitis: An integrated summary of up to 7.8 years of safety data from the global clinical programme[J]. J Crohns Colitis, 2023, 17(3):338-351. |
[50] |
Garrido I, Lopes S, Macedo G. Hit the road JAK! The role of new oral treatment in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2021, 27(12):2010-2022.
doi: 10.1093/ibd/izab037 pmid: 33742651 |
[51] | Shawky AM, Almalki FA, Abdalla AN, et al. A comprehensive overview of globally approved JAK inhibitors[J]. Pharmaceutics, 2022, 14(5): 1001. |
[52] | Loftus EJ, Panés J, Lacerda AP, et al. Upadacitinib induction and maintenance therapy for Crohn's disease[J]. N Engl J Med, 2023, 388(21):1966-1980. |
[53] | Guo J, Wang LY, Wu J, et al. The JAK2 inhibitor AG490 regulates the Treg/Th17 balance and alleviates DSS-induced intestinal damage in IBD rat[J]. Clin Exp Pharmacol Physiol, 2020, 47(8):1374-1381. |
[54] | Wang D, Yin J, Dong R, et al. Inhibition of Janus kinase-2 signalling pathway ameliorates portal hypertensive syndrome in partial portal hypertensive and liver cirrhosis rats[J]. Dig Liver Dis, 2015, 47(4):315-323. |
[55] | Lin Z, Liu Y, Xu T, et al. STAT3-mediated promoter-enhancer interaction up-regulates inhibitor of DNA binding 1 (ID1) to promote colon cancer progression[J]. Int J Mol Sci, 2023, 24(12): 10041. |
[1] | Su Rui, Wang Cunkai, Wang Dingxin, Cai Conghui, Zhang Jian, Hou Hongtao, Bai Yun. Efficacy and safety of anticoagulant therapy in patients with cirrhosis: A meta-analysis [J]. Clinical Focus, 2025, 40(4): 293-303. |
[2] | Qi Xueting, Li Guona, Xue Rong, Zhang Junfang, Jia Jingjing, Huang Wenhui, Li Yingping. Characteristics of single-center peritoneal dialysis-associated peritonitis [J]. Clinical Focus, 2025, 40(4): 334-338. |
[3] | . [J]. Clinical Focus, 2025, 40(4): 377-380. |
[4] | Lin Tao, Du Taoming, Li Ya, Feng Yuling, Song Huizhen, Yu Qin. Value of T2WI signal intensity and gadobemeglumine enhanced MRI hepatobiliary phase parameters in evaluating liver function of cirrhosis patients [J]. Clinical Focus, 2025, 40(3): 251-256. |
[5] | Tong Mingxia, Chen Ke, Xiang Xiaocong, Zhou Lifeng. Analysis of lean metabolic-associated fatty liver disease among young and middle-aged people and its risk factors [J]. Clinical Focus, 2025, 40(2): 128-132. |
[6] | Qian Chenying, Yan Wenjun, Huang Yan, Zhao Zhi. Analysis of risk factors for multidrug-resistant bacterial infection in patients with decompensated cirrhosis [J]. Clinical Focus, 2025, 40(2): 143-146. |
[7] | Sun Ya, Yang Shuang. Value of ultrasound-guided attenuation parameter in the quantitative assessment of hepatic steatosis [J]. Clinical Focus, 2025, 40(2): 158-161. |
[8] | Gou Caixia, Zhang Jie, Baoyixiamu·Ababaikeli , Wang Yiming, Yao Lei, Zheng Rongjiong, Pan Jinliang, Lu Xiaobo. Analysis of influencing factors of sleep quality and metabolically associated fatty liver disease in the physical examination population [J]. Clinical Focus, 2025, 40(1): 33-38. |
[9] | Hu Rongqiu, Yan Le. Causal relationship between reflux esophagitis and otitis media: a two-sample Mendelian randomization analysis in the European population [J]. Clinical Focus, 2024, 39(12): 1089-1094. |
[10] | Zhang Shasha, Zhao Yingchun, Zhou Hongxia. Effect of low-level viremia on the incidence of hepatocellular carcinomas in patients with hepatitis B cirrhosis treated with entecavir [J]. Clinical Focus, 2024, 39(11): 980-983. |
[11] | . [J]. Clinical Focus, 2024, 39(11): 1035-1039. |
[12] | . [J]. Clinical Focus, 2024, 39(10): 935-939. |
[13] | Qin Qiaoling, Mo Ranghui, Chen Xinyi. Efficacy and safety of the direct-acting anti-HCV therapy based on efavirenz-containing regimen on HIV/HCV co-infected patients [J]. Clinical Focus, 2024, 39(10): 921-924. |
[14] | Li Zhenan, Zhu Xuejuan, Li Shang, Wang Junmin. Effect of glucocorticoids with varied courses on the prevention of esophageal stricture after esophageal submucosal dissection [J]. Clinical Focus, 2024, 39(10): 896-900. |
[15] | Gu Dandan, Zhou Xiaoxian, Wang Jingxian, Wu Chunxiao. Rectal cap polyposis: A case report and literature review [J]. Clinical Focus, 2024, 39(9): 828-832. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||