Clinical Focus ›› 2025, Vol. 40 ›› Issue (2): 189-192.doi: 10.3969/j.issn.1004-583X.2025.02.017
Received:
2024-08-21
Online:
2025-02-20
Published:
2025-03-05
CLC Number:
[1] | Huang L, Xiao Y, Yang L, et al. The development for emerging biomarkers of lymphangioleiomyomatosis[J]. Orphanet J Rare Dis, 2024, 19(1):445. |
[2] |
McCarthy C, Gupta N, Johnson SR, et al. Lymphangioleiomyomatosis: Pathogenesis, clinical features, diagnosis, and management[J]. Lancet Respir Med, 2021, 9(11):1313-1327.
doi: 10.1016/S2213-2600(21)00228-9 pmid: 34461049 |
[3] | Kimura Y, Jo T, Hashimoto Y, et al. Epidemiology of patients with lymphangioleiomyomatosis: A descriptive study using the national database of health insurance claims and specific health checkups of Japan[J]. Respir Investig, 2024, 62(3):494-502. |
[4] | Rebaine Y, Nasser M, Girerd B, et al. Tuberous sclerosis complex for the pulmonologist[J]. Eur Respir Rev, 2021, 30(161):200348. |
[5] | Evans JF, McCormack FX, Sonenberg N, et al. Lost in translation: A neglected mTOR target for lymphangioleiomyomatosis[J]. Eur Respir Rev, 2023, 32(169):230100. |
[6] |
Brakemeier S, Grohé C, Bachmann F, et al. Sporadic lymphangioleiomyomatosis (sLAM) and tuberous sclerosis complex (TSC)-pulmonary manifestations[J]. Pneumologie, 2017, 71(2):86-95.
doi: 10.1055/s-0042-111522 pmid: 27585353 |
[7] | Lu Y, Liu X, Zhang E, et al. Estrogen activates pyruvate kinase M2 and increases the growth of TSC2-deficient cells[J]. PLoS One, 2020, 15(2):e0228894. |
[8] | Kundu N, Holz MK. Lymphangioleiomyomatosis: A metastatic lung disease[J]. Am J Physiol Cell Physiol, 2023, 324(2):C320-C326. |
[9] | Xu KF, Xu W, Liu S, et al. Lymphangioleiomyomatosis[J]. Semin Respir Crit Care Med, 2020, 41(2):256-268. |
[10] |
Tai J, Liu S, Yan X, et al. Novel developments in the study of estrogen in the pathogenesis and therapeutic intervention of lymphangioleiomyomatosis[J]. Orphanet J Rare Dis, 2024, 19(1):236.
doi: 10.1186/s13023-024-03239-1 pmid: 38877584 |
[11] | Gupta N, Finlay GA, Kotloff RM, et al. Lymphangioleiomyomatosis diagnosis and management: High-resolution chest computed tomography, transbronchial lung biopsy, and pleural disease management. An official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guideline[J]. Am J Respir Crit Care Med, 2017, 196(10):1337-1348. |
[12] | Xu W, Yang C, Cheng C, et al. Determinants of progression and mortality in lymphangioleiomyomatosis[J]. Chest, 2023, 164(1):137-148. |
[13] |
Amaral AF, de Oliveira MR, Dias OM, et al. Concentration of serum vascular endothelial growth factor (VEGF-D) and its correlation with functional and clinical parameters in patients with lymphangioleiomyomatosis from a Brazilian Reference Center[J]. Lung, 2019, 197(2):139-146.
doi: 10.1007/s00408-018-00191-3 pmid: 30623243 |
[14] | Hirose M, Matsumuro A, Arai T, et al. Serum vascular endothelial growth factor-D as a diagnostic and therapeutic biomarker for lymphangioleiomyomatosis[J]. PLoS One, 2019, 14(2):e0212776. |
[15] |
Martins B, Fernandes R. Disturbed matrix metalloproteinases activity in age-related macular degeneration[J]. Adv Exp Med Biol, 2023, 1415:21-26.
doi: 10.1007/978-3-031-27681-1_4 pmid: 37440009 |
[16] | Terraneo S, Lesma E, Ancona S, et al. Exploring the role of matrix metalloproteinases as biomarkers in sporadic lymphangioleiomyomatosis and tuberous sclerosis complex. A pilot study[J]. Front Med (Lausanne), 2021, 8:605909. |
[17] | Ancona S, Orpianesi E, Bernardelli C, et al. Differential modulation of matrix metalloproteinases-2 and -7 in LAM/TSC cells[J]. Biomedicines, 2021, 9(12):1760. |
[18] |
Bradding P, Pejler G. The controversial role of mast cells in fibrosis[J]. Immunol Rev, 2018, 282(1):198-231.
doi: 10.1111/imr.12626 pmid: 29431218 |
[19] | Babaei-Jadidi R, Dongre A, Miller S, et al. Mast-cell tryptase release contributes to disease progression in lymphangioleiomyomatosis[J]. Am J Respir Crit Care Med, 2021, 204(4):431-444. |
[20] | Inoue C, Miki Y, Saito-Koyama R, et al. Vasohibin-1 and -2 in pulmonary lymphangioleiomyomatosis (LAM) cells associated with angiogenic and prognostic factors[J]. Pathol Res Pract, 2022, 230:153758. |
[21] | Liu X, Xu Y, Wu X, et al. Soluble immune-related proteins as new candidate serum biomarkers for the diagnosis and progression of lymphangioleiomyomatosis[J]. Front Immunol, 2022, 13:844914. |
[22] | Esposito AJ, Imani J, Shrestha S, et al. Lymphangioleiomyomatosis: Circulating levels of FGF23 and pulmonary diffusion[J]. J Bras Pneumol, 2023, 49(2):e20220356. |
[23] | Wang YY, Zou LP, Xu KF, et al. Long-term safety and influence on growth in patients receiving sirolimus: A pooled analysis[J]. Orphanet J Rare Dis, 2024, 19(1):299. |
[24] |
Bee J, Fuller S, Miller S, et al. Lung function response and side effects to rapamycin for lymphangioleiomyomatosis: A prospective national cohort study[J]. Thorax, 2018, 73(4):369-375.
doi: 10.1136/thoraxjnl-2017-210872 pmid: 28993539 |
[25] | Moir LM. Lymphangioleiomyomatosis: Current understanding and potential treatments[J]. Pharmacol Ther, 2016, 158:114-124. |
[26] | Koc-Gunel S, Liu EC, Gautam LK, et al. Targeting fibroblast-endothelial interactions in LAM pathogenesis: 3D spheroid and spatial transcriptomic insights for therapeutic innovation[J]. bioRxiv[Preprint], 2024:2023.06.12.544372. |
[27] |
Pimenta SP, Baldi BG, Kairalla RA, et al. Doxycycline use in patients with lymphangioleiomyomatosis: Biomarkers and pulmonary function response[J]. J Bras Pneumol, 2013, 39(1):5-15.
doi: S1806-37132013000100002 pmid: 23503480 |
[28] |
Alayev A, Sun Y, Snyder RB, et al. Resveratrol prevents rapamycin-induced upregulation of autophagy and selectively induces apoptosis in TSC2-deficient cells[J]. Cell Cycle, 2014, 13(3):371-382.
doi: 10.4161/cc.27355 pmid: 24304514 |
[29] | Alayev A, Berger SM, Holz MK. Resveratrol as a novel treatment for diseases with mTOR pathway hyperactivation[J]. Ann N Y Acad Sci, 2015, 1348(1):116-123. |
[30] |
Blankenstein T, Coulie PG, Gilboa E, et al. The determinants of tumour immunogenicity[J]. Nat Rev Cancer, 2012, 12(4):307-313.
doi: 10.1038/nrc3246 pmid: 22378190 |
[31] | Minor BMN, LeMoine D, Seger C, et al. Estradiol augments tumor-induced neutrophil production to promote tumor cell actions in lymphangioleiomyomatosis models[J]. Endocrinology, 2023, 164(6):bqad061. |
[32] | Thomas A, Sumughan S, Dellacecca ER, et al. Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice[J]. JCI Insight, 2021, 6(22):e152014. |
[33] | Bernardelli C, Caretti A, Lesma E. Dysregulated lipid metabolism in lymphangioleiomyomatosis pathogenesis as a paradigm of chronic lung diseases[J]. Front Med (Lausanne), 2023, 10:1124008. |
[34] | Krymskaya VP, Courtwright AM, Fleck V, et al. A phase II clinical trial of the safety of simvastatin (SOS) in patients with pulmonary lymphangioleiomyomatosis and with tuberous sclerosis complex[J]. Respir Med, 2020, 163:105898. |
[35] | Fletke KJ, Taylor N, Shah N. Management of a rare case of lymphangioleiomyomatosis complicated by recurrent pneumothorax[J]. BMJ Case Rep, 2024, 17(9):e260369. |
[36] | Warrior K, Dilling DF. Lung transplantation for lymphangioleiomyomatosis[J]. J Heart Lung Transplant, 2023, 42(1):40-52. |
[1] | Wang Jiaqi, Meng Jianbo, Song Xiaoning, Zhang Jinqiao, Zang Meirong, Lu Jiapei, Suo Jing. Clear cell renal cell carcinoma combined with multiple myeloma: A case report and literature review [J]. Clinical Focus, 2024, 39(11): 1021-1025. |
[2] | Fan Qiaozhen, Kang Rui, Zhang Ting. Multi-parameter flow cytometry identifies regenerating cells with phenotypes similar to minimal residual disease in acute myeloid leukemia [J]. Clinical Focus, 2024, 39(8): 716-727. |
[3] | . [J]. Clinical Focus, 2024, 39(4): 370-375. |
[4] | Ren Lei, Liu Ye, Bao Shuyou, Li Kuifang. Blastic plasmacytoid dendritic cell neoplasm: Two cases and literature review [J]. Clinical Focus, 2024, 39(3): 253-258. |
[5] | Huang Saihu, Long Zhongjie, Dong Xingqiang, Meng Xiangying, Wu Shuiyan, Bai Zhenjiang. Pathogen and clinical characteristics of children with hematologic neoplasms complicated with sepsis [J]. Clinical Focus, 2024, 39(1): 38-42. |
[6] | Liu Lili, Yuan Yuting, Lai Gengliang, Tian Chuan, Lan Xiang, Ye Zhonglv. The relationship between minimal residual disease on day 15 and prognosis in children with acute lymphoblastic leukemia [J]. Clinical Focus, 2024, 39(1): 47-52. |
[7] | . [J]. Clinical Focus, 2023, 38(10): 954-960. |
[8] | Dong Zhengrong, Tao Qianshan, Shen Yuanyuan, Dong Yi. Analysis of the follow-up results of 163 patients with acute promyelocytic leukemia [J]. Clinical Focus, 2023, 38(9): 813-818. |
[9] | Yang Wei, He Chendong. Primary pulmonary mucosa-associated lymphoid tissue lymphoma with dry cough as the only symptom: A case and literature review [J]. Clinical Focus, 2023, 38(7): 623-627. |
[10] | . [J]. Clinical Focus, 2023, 38(7): 654-658. |
[11] | Leng Wantong, Tao Jie. Risk factors of postoperative venous thromboembolism in patients with multiple myeloma [J]. Clinical Focus, 2023, 38(4): 340-345. |
[12] | Du Jiayi, Liu Lili, He Yongzhong, Tian Chuan, Lan Xiang, Ye Zhonglyu. Clinical observation of serious adverse events in children with acute lymphoblastic leukemia during chemotherapy [J]. Clinical Focus, 2023, 38(2): 149-154. |
[13] | Lu Luo, Wang Fei, Gu Weiying. Clinical determination of lymphocyte subsets in peripheral blood of patients with angioimmunoblastic T cell lymphoma [J]. Clinical Focus, 2022, 37(11): 1001-1007. |
[14] | Yin Lingling, Wu Wenjian, Zhu Feng. Lineage switch from acute myeloid leukemia to acute lymphoblastic leukemia: A case report and literature review [J]. Clinical Focus, 2022, 37(11): 1025-1030. |
[15] | . [J]. Clinical Focus, 2022, 37(2): 182-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||