Clinical Focus ›› 2025, Vol. 40 ›› Issue (4): 313-319.doi: 10.3969/j.issn.1004-583X.2025.04.003
Previous Articles Next Articles
Wang Zhuangzhuang1, Ren Huan1, Liu Yanting2, Tian Chunlei2()
Received:
2024-10-21
Online:
2025-04-20
Published:
2025-04-17
Contact:
Tian Chunlei
E-mail:cltianyc@163.com
CLC Number:
Wang Zhuangzhuang, Ren Huan, Liu Yanting, Tian Chunlei. Construction of a nomogram to predict postoperative hydrocephalus in patients with aneurysmal subarachnoid hemorrhage based on the Dryad database and its validation[J]. Clinical Focus, 2025, 40(4): 313-319.
项目 | 脑积水组(n=115) | 非脑积水组(n=51) | P值 | |
---|---|---|---|---|
年龄(岁) | 55.13±13.09 | 54.41±12.98 | 0.32 | 0.744 |
女性[例(%)] | 70(60.87) | 33(64.71) | 0.22 | 0.730 |
高血压[例(%)] | 72(62.61) | 34(66.67) | 0.29 | 0.861 |
吸烟[例(%)] | 36(31.30) | 18(35.29) | 0.25 | 0.720 |
酗酒[例(%)] | 12(10.43) | 5(9.80) | 0.02 | 0.902 |
糖尿病[例(%)] | 5(4.35) | 2(3.92) | 0.90 | 0.016 |
心血管疾病[例(%)] | 23(20.00) | 8(15.69) | 0.43 | 0.667 |
SAPSⅡ评分(分) | 42.21±10.91 | 42.33±14.71 | 9.47 | 0.002 |
脑出血[例(%)] | 62(53.91) | 21(41.18) | 2.29 | 0.178 |
早期脑损伤[例(%)] | 84(73.04) | 40(78.43) | 0.54 | 0.461 |
DCI[例(%)] | 39(33.91) | 8(15.68) | 5.78 | 0.016 |
再出血[例(%)] | 21(18.26) | 5(9.80) | 1.91 | 0.167 |
血管痉挛[例(%)] | 92(80.00) | 21(41.18) | 1.23 | 0.035 |
机械通气时间(d) | 20.37±1.51 | 13.51±2.43 | 2.45 | 0.015 |
住院时间(d) | 27.64±1.91 | 18.65±3.51 | 2.43 | 0.016 |
动脉瘤位置[例(%)] | ||||
前循环 | 104(90.43) | 41(80.39) | ||
后循环 | 9(7.82) | 10(19.61) | 1.24 | <0.001 |
其他 | 1(1.75) | 0(0.00) | ||
GCS评分[例(%)] | ||||
≤5分 | 113(98.26) | 50(98.04) | ||
6~8分 | 2(1.74) | 0(0.00) | 3.14 | 0.208 |
≥9分 | 0(0) | 1(1.96) | ||
Fisher评分[例(%)] | ||||
Ⅰ | 1(0.87) | 0(0.00) | ||
Ⅱ | 2(1.73) | 2(3.92) | 1.44 | 0.696 |
Ⅲ | 21(18.26) | 11(21.57) | ||
Ⅳ | 91(79.13) | 38(74.51) | ||
手术方式[例(%)] | ||||
介入栓塞 开颅夹闭 | 80(69.57) 35(30.43) | 32(62.75) 19(37.25) | 21.36 | <0.001 |
Tab. 1 Clinical features of training set groups
项目 | 脑积水组(n=115) | 非脑积水组(n=51) | P值 | |
---|---|---|---|---|
年龄(岁) | 55.13±13.09 | 54.41±12.98 | 0.32 | 0.744 |
女性[例(%)] | 70(60.87) | 33(64.71) | 0.22 | 0.730 |
高血压[例(%)] | 72(62.61) | 34(66.67) | 0.29 | 0.861 |
吸烟[例(%)] | 36(31.30) | 18(35.29) | 0.25 | 0.720 |
酗酒[例(%)] | 12(10.43) | 5(9.80) | 0.02 | 0.902 |
糖尿病[例(%)] | 5(4.35) | 2(3.92) | 0.90 | 0.016 |
心血管疾病[例(%)] | 23(20.00) | 8(15.69) | 0.43 | 0.667 |
SAPSⅡ评分(分) | 42.21±10.91 | 42.33±14.71 | 9.47 | 0.002 |
脑出血[例(%)] | 62(53.91) | 21(41.18) | 2.29 | 0.178 |
早期脑损伤[例(%)] | 84(73.04) | 40(78.43) | 0.54 | 0.461 |
DCI[例(%)] | 39(33.91) | 8(15.68) | 5.78 | 0.016 |
再出血[例(%)] | 21(18.26) | 5(9.80) | 1.91 | 0.167 |
血管痉挛[例(%)] | 92(80.00) | 21(41.18) | 1.23 | 0.035 |
机械通气时间(d) | 20.37±1.51 | 13.51±2.43 | 2.45 | 0.015 |
住院时间(d) | 27.64±1.91 | 18.65±3.51 | 2.43 | 0.016 |
动脉瘤位置[例(%)] | ||||
前循环 | 104(90.43) | 41(80.39) | ||
后循环 | 9(7.82) | 10(19.61) | 1.24 | <0.001 |
其他 | 1(1.75) | 0(0.00) | ||
GCS评分[例(%)] | ||||
≤5分 | 113(98.26) | 50(98.04) | ||
6~8分 | 2(1.74) | 0(0.00) | 3.14 | 0.208 |
≥9分 | 0(0) | 1(1.96) | ||
Fisher评分[例(%)] | ||||
Ⅰ | 1(0.87) | 0(0.00) | ||
Ⅱ | 2(1.73) | 2(3.92) | 1.44 | 0.696 |
Ⅲ | 21(18.26) | 11(21.57) | ||
Ⅳ | 91(79.13) | 38(74.51) | ||
手术方式[例(%)] | ||||
介入栓塞 开颅夹闭 | 80(69.57) 35(30.43) | 32(62.75) 19(37.25) | 21.36 | <0.001 |
变量 | 单因素分析 | 多因素分析 | |||
---|---|---|---|---|---|
OR(95%CI) | P值 | OR(95%CI) | P值 | ||
年龄≥60岁 | 1.496(1.081~1.833) | 0.009 | 1.170(1.060~1.343) | 0.032 | |
女性[例(%)] | 1.159(0.585~2.296) | 0.671 | - | - | |
高血压[例(%)] | 1.275(0.604~2.694) | 0.523 | - | - | |
吸烟[例(%)] | 0.879(0.450~1.716) | 0.707 | - | - | |
酗酒[例(%)] | 0.883(0.247~3.155) | 0.848 | - | - | |
糖尿病[例(%)] | 2.075(0.226~19.021) | 0.518 | - | - | |
心血管疾病[例(%)] | 1.333(0.546~3.252) | 0.527 | - | - | |
SAPSⅡ评分[例(%)] | 1.040(0.691~1.565) | 0.849 | - | - | |
开颅夹闭[例(%)] | 1.493(1.038~1.718) | <0.001 | 2.018(1.163~3.503) | 0.041 | |
脑室出血[例(%)] | 1.414(1.214~1.799) | 0.008 | 1.439(1.176~1.953) | 0.032 | |
再出血[例(%)] | 1.456(1.211~1.984) | 0.045 | 1.095(1.057~1.243) | <0.001 | |
DCI[例(%)] | 3.428(1.475~7.968) | 0.004 | 1.318(1.096~1.576) | 0.038 | |
早期脑损伤[例(%)] | 2.052(0.647~6.505) | 0.221 | - | - | |
血管痉挛[例(%)] | 2.526(1.177~5.420) | 0.057 | - | - | |
机械通气时间(d) | 2.320(1.378~3.907) | <0.001 | 3.112(1.840~5.309) | 0.012 | |
住院时间(d) | 0.621(0.103~1.139) | 0.090 | - | - |
Tab. 2 Univariate and multivariate logistic regression analyses of postoperative hydrocephalus in aSAH patients
变量 | 单因素分析 | 多因素分析 | |||
---|---|---|---|---|---|
OR(95%CI) | P值 | OR(95%CI) | P值 | ||
年龄≥60岁 | 1.496(1.081~1.833) | 0.009 | 1.170(1.060~1.343) | 0.032 | |
女性[例(%)] | 1.159(0.585~2.296) | 0.671 | - | - | |
高血压[例(%)] | 1.275(0.604~2.694) | 0.523 | - | - | |
吸烟[例(%)] | 0.879(0.450~1.716) | 0.707 | - | - | |
酗酒[例(%)] | 0.883(0.247~3.155) | 0.848 | - | - | |
糖尿病[例(%)] | 2.075(0.226~19.021) | 0.518 | - | - | |
心血管疾病[例(%)] | 1.333(0.546~3.252) | 0.527 | - | - | |
SAPSⅡ评分[例(%)] | 1.040(0.691~1.565) | 0.849 | - | - | |
开颅夹闭[例(%)] | 1.493(1.038~1.718) | <0.001 | 2.018(1.163~3.503) | 0.041 | |
脑室出血[例(%)] | 1.414(1.214~1.799) | 0.008 | 1.439(1.176~1.953) | 0.032 | |
再出血[例(%)] | 1.456(1.211~1.984) | 0.045 | 1.095(1.057~1.243) | <0.001 | |
DCI[例(%)] | 3.428(1.475~7.968) | 0.004 | 1.318(1.096~1.576) | 0.038 | |
早期脑损伤[例(%)] | 2.052(0.647~6.505) | 0.221 | - | - | |
血管痉挛[例(%)] | 2.526(1.177~5.420) | 0.057 | - | - | |
机械通气时间(d) | 2.320(1.378~3.907) | <0.001 | 3.112(1.840~5.309) | 0.012 | |
住院时间(d) | 0.621(0.103~1.139) | 0.090 | - | - |
Fig. 2 ROC curve for validating the performance of the nomogram in predicting the risk of postoperative hydrocephalus in aSAH patients a. Training set; b. Validation set
Fig. 3 Calibration curve for validating the performance of the nomogram in predicting the risk of postoperative hydrocephalus in aSAH patients a. Training set; b. Validation set
Fig. 4 DCA for validating the performance of the nomogram in predicting the risk of postoperative hydrocephalus in aSAH patients a. Training set; b. Validation set
[1] | Kuo LT, Huang AP. The pathogenesis of hydrocephalus following aneurysmal subarachnoid hemorrhage[J]. Int J Mol Sci, 2021, 22(9): 5050. |
[2] |
Hudson JS, Prout BS, Nagahama Y, et al. External ventricular drain and hemorrhage in aneurysmal subarachnoid hemorrhage patients on dual antiplatelet therapy: A retrospective cohort study[J]. Neurosurgery, 2019, 84(2): 479-484.
doi: 10.1093/neuros/nyy127 pmid: 29660038 |
[3] | Yang YC, Yin CH, Chen KT, et al. Prognostic nomogram of predictors for shunt-dependent hydrocephalus in patients with aneurysmal subarachnoid hemorrhage receiving external ventricular drain insertion: A single-center experience and narrative review[J]. World Neurosurg, 2021, 150: e12-e22. |
[4] | Nelson SE, Suarez JI, Sigmon A, et al. External ventricular drain use is associated with functional outcome in aneurysmal subarachnoid hemorrhage[J]. Neurol Res Pract, 2022, 4(1): 25. |
[5] | Konovalov A, Shekhtman O, Pilipenko Y, et al. External ventricular drainage in patients with acute aneurysmal subarachnoid hemorrhage after microsurgical clipping: Our 2006-2018 experience and a literature review[J]. Cureus, 2021, 13(1): e12951. |
[6] |
Park SY. Nomogram: An analogue tool to deliver digital knowledge[J]. J Thorac Cardiovasc Surg, 2018, 155(4): 1793.
doi: S0022-5223(18)30022-9 pmid: 29370910 |
[7] | Chalard K, Szabo V, Pavillard F, et al. Long-term outcome in patients with aneurysmal subarachnoid hemorrhage requiring mechanical ventilation[J]. PLoS One, 2021, 16(3): e0247942. |
[8] | Talbot-Stetsko HK, Pawlowski KD, Aaron BL, et al. Ventricular volume change as a predictor of shunt-dependent hydrocephalus in aneurysmal subarachnoid hemorrhage[J]. World Neurosurg, 2022, 157: e57-e65. |
[9] | Cheng YW, Han XN, Xie WF, et al. Safety and efficacy of magnesium-rich artificial cerebrospinal fluid for subarachnoid hemorrhage[J]. Front Neurol, 2024, 15: 1376216. |
[10] | Hu P, Wu YZ, Yan TF, et al. Deep learning-based quantification of total bleeding volume and its association with complications, disability, and death in patients with aneurysmal subarachnoid hemorrhage[J]. J Neurosurg, 2024: 1-12. |
[11] | 曹晓璐, 揣春阳, 周梦, 等. 动脉瘤性蛛网膜下腔出血介入栓塞术后并发脑积水的危险因素分析[J], 中国临床实用医学, 2024, 15(1): 23-28. |
[12] | 吴承学, 沈国良. 动脉瘤性蛛网膜下腔出血术后并发脑积水的危险因素分析[J]. 浙江创伤外科, 2022, 27(4): 668-670. |
[13] | 李云飞, 程琼, 汪银洲, 等. 脑脊液分析对动脉瘤性蛛网膜下腔出血介入术后亚急性脑积水的预测价值[J]. 江苏大学学报(医学版), 2023, 33(3): 258-264. |
[14] | Lenkeit A, Oppong MD, Dinger TF, et al. Risk factors for poor outcome after aneurysmal subarachnoid hemorrhage in patients with initial favorable neurological status[J]. Acta Neurochir, 2024, 166(1): 93. |
[15] | Magid-Bernstein J, Yan J, Herman AL, et al. Characterization of CSF inflammatory markers after hemorrhagic stroke and their relationship to disease severity[J]. medRxiv, 2023: 2023.12.05.23299566. |
[16] |
Pegoli M, Mandrekar J, Rabinstein AA, et al. Predictors of excellent functional outcome in aneurysmal subarachnoid hemorrhage[J]. J Neurosurg, 2015, 122(2): 414-418.
doi: 10.3171/2014.10.JNS14290 pmid: 25495745 |
[17] |
Koyanagi M, Fukuda H, Saiki M, et al. Effect of choice of treatment modality on the incidence of shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage[J]. J Neurosurg, 2018, 130(3): 949-955.
doi: 10.3171/2017.9.JNS171806 pmid: 29521594 |
[18] | Gangemi M, Cavallo LM, Di Somma A, et al. Hydrocephalus onset after microsurgical or endovascular treatment for acute subarachnoid hemorrhage. Retrospective Italian multicenter study[J]. Transl Med UniSa, 2014, 9: 50-55. |
[19] | Fung C, De Marchis GM, Katan M, et al. Copeptin as a marker for severity and prognosis of aneurysmal subarachnoid hemorrhage[J]. PLoS One, 2013, 8(1): e53191. |
[20] |
Karamanakos PN, von Und Zu Fraunberg M, Bendel S, et al. Risk factors for three phases of 12-month mortality in 1657 patients from a defined population after acute aneurysmal subarachnoid hemorrhage[J]. World Neurosurg, 2012, 78(6): 631-639.
doi: 10.1016/j.wneu.2011.08.033 pmid: 22120293 |
[21] | 顾昌伟, 周新民, 叶富华, 等. 动脉瘤性蛛网膜下腔出血患者显微外科手术治疗的转归及其影响因素[J], 国际脑血管病杂志, 2015, 23(10): 767-771. |
[22] | Rumalla K, Catapano JS, Srinivasan VM, et al. Decompressive craniectomy and risk of wound infection after microsurgical treatment of ruptured aneurysms[J]. World Neurosurg, 2021, 154: e163-e167. |
[23] |
Akeret K, Buzzi RM, Saxenhofer M, et al. The HeMoVal study protocol: A prospective international multicenter cohort study to validate cerebrospinal fluid hemoglobin as a monitoring biomarker for aneurysmal subarachnoid hemorrhage related secondary brain injury[J]. BMC Neurol, 2022, 22(1): 267.
doi: 10.1186/s12883-022-02789-w pmid: 35850705 |
[24] | Capion T, Lilja-Cyron A, Bartek J Jr, et al. Discontinuation of external ventricular drainage in patients with hydrocephalus following aneurysmal subarachnoid hemorrhage-a Scandinavian multi-institutional survey[J]. Acta Neurochir, 2020, 162(6): 1363-1370. |
[25] |
Lauzier DC, Jayaraman K, Yuan JY, et al. Early brain injury after subarachnoid hemorrhage: Incidence and mechanisms[J]. Stroke, 2023, 54(5): 1426-1440.
doi: 10.1161/STROKEAHA.122.040072 pmid: 36866673 |
[26] | Neumaier F, Weiss M, Veldeman M, et al. Changes in endogenous daytime melatonin levels after aneurysmal subarachnoid hemorrhage-Preliminary findings from an observational cohort study[J]. Clin Neurol Neurosurg, 2021, 208: 106870. |
[27] |
Motiei-Langroudi R, Adeeb N, Foreman PM, et al. Predictors of shunt insertion in aneurysmal subarachnoid hemorrhage[J]. World Neurosurg, 2017, 98: 421-426.
doi: S1878-8750(16)31240-2 pmid: 27890755 |
[28] | Kedziora J, Burzynska M, Gozdzik W, et al. Brain-specific biomarkers as mortality predictors after aneurysmal subarachnoid haemorrhage[J]. J Clin Med, 2020, 9(12): 4117. |
[29] |
Ivanov A, Linninger A, Hsu CY, et al. Correlation between angiographic transit times and neurological status on admission in patients with aneurysmal subarachnoid hemorrhage[J]. J Neurosurg, 2016, 124(4): 1093-1099.
doi: 10.3171/2015.4.JNS15134 pmid: 26452118 |
[30] |
Panni P, Donofrio CA, Barzaghi LR, et al. Safety and feasibility of lumbar drainage in the management of poor grade aneurysmal subarachnoid hemorrhage[J]. J Clin Neurosci, 2019, 64: 64-70.
doi: S0967-5868(18)31838-1 pmid: 31023571 |
[31] |
Croci DM, Dalolio M, Aghlmandi S, et al. Early permanent cerebrospinal fluid diversion in aneurysmal subarachnoid hemorrhage: Does a lower rate of nosocomial meningitis outweigh the risk of delayed cerebral vasospasm related morbidity?[J]. Neurol Res, 2021, 43(1): 40-53.
doi: 10.1080/01616412.2020.1819091 pmid: 33106124 |
[32] | Kwan K, Arapi O, Wagner KE, et al. Cerebrospinal fluid macrophage migration inhibitory factor: A potential predictor of cerebral vasospasm and clinical outcome after aneurysmal subarachnoid hemorrhage[J]. J Neurosurg, 2019: 1-6. |
[33] |
García S, Torné R, Hoyos JA, et al. Quantitative versus qualitative blood amount assessment as a predictor for shunt-dependent hydrocephalus following aneurysmal subarachnoid hemorrhage[J]. J Neurosurg, 2018, 131(6): 1743-1750.
doi: 10.3171/2018.7.JNS18816 pmid: 30579275 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||